
Dyalog APL Language
Reference Guide

Dyalog is a trademark of Dyalog Limited

Copyright © 1982-2018 by Dyalog Limited

All rights reserved.

Version: 17.0

Revision: 2987 dated 20230217

Please note that unless otherwise stated, all the examples in this document assume that ⎕IO is 1, and ⎕ML is 1.

Nopart of this publicationmay be reproduced in any form by any means without the prior written
permission of Dyalog Limited.

Dyalog Limitedmakes no representations or warranties with respect to the contents hereof and
specifically disclaims any impliedwarranties of merchantability or fitness for any particular purpose.
Dyalog Limited reserves the right to revise this publicationwithout notification.

email: support@dyalog.com
https://www.dyalog.com

TRADEMARKS:

SQAPL is copyright of Insight Systems ApS.

UNIX is a registered trademark of The OpenGroup.

Windows, Windows Vista, Visual Basic andExcel are trademarks of Microsoft Corporation.

Oracle and Java are registered trademarks of Oracle and/or its affiliates.

macOS®, Mac OS® andOSX® (operating system software) are trademarks of Apple Inc., registered in
the U.S. and other countries.

Array Editor is copyright of davidliebtag.com.

All other trademarks and copyrights are acknowledged.

iii

Contents

Chapter 1: Primitive Functions 1
Key to Notation 1
Migration Level 1
Scalar Functions 2
Mixed Functions 5
Conformability 8
Fill Elements 8
Axis Operator 9

Abort 10
Add 11
And, Lowest Common Multiple 12
Assignment 13
Assignment (Indexed) 16
Assignment (Selective) 21
Binomial 23
Branch 24
Catenate/Laminate 26
Catenate First 28
Ceiling 28
Circular 29
Conjugate 30
Deal 31
Decode 32
Depth 34
Direction (Signum) 35
Disclose 36
Divide 37
Drop 38
Drop with Axes 39
Enclose 40
Enclose with Axes 41
Encode 42
Enlist 44
Equal 45
Excluding 46
Execute 47
Expand 48
Expand First 49
Exponential 49
Factorial 49

iv

Find 50
First 51
Floor 51
Format (Monadic) 52
Format (Dyadic) 56
Grade Down (Monadic) 58
Grade Down (Dyadic) 59
Grade Up (Monadic) 62
Grade Up (Dyadic) 65
Greater 66
Greater Or Equal 67
Index 68
Index with Axes 71
Index Generator 72
Index Of 73
Indexing 76
Intersection 80
Interval Index 81
Left 88
Less 89
Less Or Equal 89
Logarithm 90
Magnitude 90
Match 91
Matrix Divide 92
Matrix Inverse 94
Maximum 95
Membership 95
Minimum 95
Minus 95
Mix 96
Multiply 101
Nand 101
Natural Logarithm 102
Negative 102
Nest 103
Nor 103
Not 104
Not Equal 104
Not Match 105
Or, Greatest Common Divisor 106
Partition 107
Partitioned Enclose 109
Pi Times 110
Pick 110
Plus 111
Power 111
Ravel 112

v

Ravel with Axes 112
Reciprocal 115
Replicate 115
Reshape 117
Residue 117
Reverse 118
Reverse First 118
Right 119
Roll 120
Rotate 121
Rotate First 122
Same 123
Shape 124
Split 125
Subtract 125
Table 126
Take 127
Take with Axes 128
Tally 129
Times 129
Transpose (Monadic) 129
Transpose (Dyadic) 130
Type 132
Union 132
Unique 133
Where 134
Without 134
Zilde 134

Chapter 2: PrimitiveOperators 135
Operator Syntax 135
Operators Summarised 137
Operators (A-Z) 139

Assignment (Modified) 139
Assignment (Indexed Modified) 140
Assignment (Selective Modified) 141
At 142
Axis (with Monadic Operand) 146
Axis (with Dyadic Operand) 147
Commute 150
Composition (Form I) 151
Composition (Form II) 152
Composition (Form III) 153
Composition (Form IV) 153
Each (with Monadic Operand) 154
Each (with Dyadic Operand) 155
I-Beam 156

vi

Inner Product 157
Key 158
Outer Product 162
Power Operator 163
Rank 166
Reduce 169
Reduce First 171
Reduce N-Wise 172
Reduce First N-Wise 172
Scan 173
Scan First 174
Spawn 175
Stencil 176
Variant 183

Chapter 3: The I-BeamOperator 187
I-Beam 187
Inverted Table Index Of 190
Execute Expression 192
Overwrite Free Pockets 193
Canonical Representation 194
Unsqueezed Type 194
Syntax Colouring 195
Syntax Colour Tokens 196
Compress Vector of Short Integers 197
Serialise/Deserialise Array 199
Compiler Control 200
Trap Control 203
Case Convert 204
Called Monadically 205
Temporary Directory 206
Loaded Libraries 207
Number of Threads 208
Parallel Execution Threshold 208
Update Function Time Stamp 209
Hash Array 210
Memory Manager Statistics 212
Specify Workspace Available 215
Update DataTable 216
Read DataTable 219
Remove Data Binding 221
Create Data Binding Source 222
Create .NET Delegate 233
Identify .NET Type 234
Flush Session Caption 234
Close All Windows 235
Set Dyalog Pixel Type 235

vii

Override COM Default Value 236
Export To Memory 236
Close .NET AppDomain 237
Set Workspace Save Options 237
Expose Root Properties 238
Discard Thread on Exit 239
Discard Parked Threads 239
Mark Thread as Uninterruptible 240
Use Separate Thread For .NET 241
Continue Autosave 242
Disable Component ChecksumValidation 242
Send Text to RIDE-embedded Browser 243
Connected to the RIDE 243
Manage RIDE Connections 244
Fork New Task 246
Change User 247
Reap Forked Tasks 248
Signal Counts 250
List Loaded Files 251
List Loaded File Objects 252
Remove Loaded File Object Info 253
Loaded File Object Info 254
JSON Translate Name 255
Singular Value Decomposition 256
Line Count 257

Chapter 4: SystemFunctions 259
System Constants 261
System Variables 262
System Operators 264
System Namespaces 264
System Functions Categorised 265

Character Input/Output 275
Evaluated Input/Output 277
Underscored Alphabetic Characters 279
Alphabetic Characters 279
Account Information 280
Account Name 280
Arbitrary Input 281
Arbitrary Output 283
Attributes 284
Atomic Vector 288
Atomic Vector - Unicode 288
Base Class 291
Class 292
ClearWorkspace 294
Execute Windows Command 295

viii

Start Windows Auxiliary Processor 299
Canonical Representation 300
Change Space 302
Comma Separated Values 305
Comparison Tolerance 319
Copy Workspace 320
Digits 322
Decimal Comparison Tolerance 322
Display Form 323
Division Method 326
Delay 327
Diagnostic Message 327
Extended Diagnostic Message 328
Dequeue Events 333
Data Representation (Monadic) 336
Data Representation (Dyadic) 337
Edit Object 339
Event Message 341
Event Number 341
Exception 342
Expunge Object 343
Export Object 345
File Append Component 346
File System Available 346
File Check and Repair 347
File Copy 350
File Create 352
File Drop Component 354
File Erase 355
File History 355
File Hold 357
Fix Script 359
Component File Library 361
Format (Monadic) 362
Format (Dyadic) 363
File Names 370
File Numbers 371
File Properties 372
Floating-Point Representation 376
File Read Access 378
File Read Component Information 379
File Read Components 380
File Rename 381
File Replace Component 382
File Resize 383
File Size 384
File Set Access 384
File Share Tie 385

ix

Exclusive File Tie 386
File Untie 387
Fix Definition 387
Instances 388
Index Origin 389
JSON Convert 390
Key Label 400
Line Count 400
Load Workspace 401
Lock Definition 402
Latent Expression 403
Map File 403
Make Directory 406
Migration Level 407
Set Monitor 409
Query Monitor 410
Name Association 411
Native File Append 438
Name Classification 439
Native File Copy 451
Native File Create 456
Native File Delete 458
Native File Erase 460
New Instance 461
Native File Exists 463
Read Text File 464
Native File Information 467
Name List 471
Native File Lock 475
Native File Move 477
Native File Names 481
Native File Numbers 481
File Name Parts 482
Write Text File 484
Enqueue Event 486
Nested Representation 488
Native File Read 489
Native File Rename 491
Native File Replace 491
Native File Resize 492
Namespace 493
Namespace Indicator 495
Native File Size 495
Native File Tie 496
Null Item 498
Native File Untie 499
Native File Translate 499
Sign Off APL 500

x

Variant 500
Object Representation 501
Search Path 505
Program Function Key 507
Print Precision 508
Profile Application 509
Print Width 516
Replace 517
Cross References 539
Random Link 540
Space Indicator 545
Response Time Limit 546
Search 546
Save Workspace 547
Screen Dimensions 548
Session Namespace 548
Execute (UNIX) Command 549
Start UNIX Auxiliary Processor 550
Shadow Name 551
State Indicator 552
Signal Event 553
Size of Object 557
Screen Map 558
Screen Read 561
Source 565
State Indicator Stack 566
State of Object 568
Set Stop 569
Query Stop 570
Set Access Control 571
Query Access Control 572
Shared Variable Offer 573
Query Degree of Coupling 575
Shared Variable Query 576
Shared Variable Retract Offer 576
Shared Variable State 577
Terminal Control 578
Thread Child Numbers 579
Get Tokens 579
This Space 581
Current Thread Identity 582
Kill Thread 582
Current Thread Name 583
Thread Numbers 583
Token Pool 583
Put Tokens 584
Set Trace 585
Query Trace 586

xi

Trap Event 587
Token Requests 591
Time Stamp 592
Wait for Threads to Terminate 593
Unicode Convert 594
Using (Microsoft .NET Search Path) 597
Vector Representation 598
Verify & Fix Input 600
Workspace Available 601
Window Create Object 602
Window Get Property 605
Window Child Names 606
Window Set Property 607
Workspace Identification 608
Window Expose 609
XML Convert 610
Extended State Indicator 625
Set External Variable 626
Query External Variable 628

Chapter 5: SystemCommands 629
Introduction 629
System Commands (A-Z) 631

List Classes 631
ClearWorkspace 631
Windows Command Processor 632
Save Continuation 633
Copy Workspace 634
Change Space 638
Drop Workspace 638
Edit Object 639
Erase Object 640
List Events 640
List Global Defined Functions 641
Display Held Tokens 642
List Workspace Library 643
Load Workspace 644
List Methods 645
Create Namespace 645
List Global Namespaces 646
List Global Namespaces 646
Sign Off APL 646
List Global Defined Operators 646
Protected Copy 647
List Properties 648
Reset State Indicator 648
Save Workspace 649

xii

Execute (UNIX) Command 651
State Indicator 652
Clear State Indicator 654
State Indicator & Name List 654
Thread Identity 655
List Global Defined Variables 656
Workspace Identification 656
Load without Latent Expression 657

Appendices: PCRESpecifications 659
Appendix A - PCRE Syntax Summary 660
Appendix B - PCRE Regular Expression Details 667

Symbolic Index 717

Index 727

Chapter 1: Primitive Functions 1

Chapter 1:

Primitive Functions

Key to Notation
The following definitions and conventions apply throughout this manual:

f A function, or an operator's left operand (function or array).

g A function, or an operator's right operand (function or array).

A An operator's left argument when an array.

B An operator's right argument when an array.

X The left argument of a function.

Y The right argument of a function.

R The explicit result of a function.

[K] Axis specification.

[I] Index specification.

{X} The left argument of a function is optional.

{R}←
The function may or may not return a result, or the result may be
suppressed.

function may refer to a primitive function, a system function, a defined (canonical,
dfn or assigned) function or a derived (from an operator) function.

Migration Level
⎕ML determines the degree of migration of the Dyalog APL language towards IBM's
APL2. Unless otherwise stated, the manual assumes ⎕ML has a value of 1.

Chapter 1: Primitive Functions 2

Scalar Functions
There is a class of primitive functions termed scalar functions This class is identified
in Table 1 below. Scalar functions are pervasive, i.e. their properties apply at all
levels of nesting. Scalar functions have the following properties:

Table 1: Scalar Primitive Functions
Symbol Monadic Dyadic

+ Conjugate Plus (Add)

- Negative Minus (Subtract)

× Direction (Signum) Times (Multiply)

÷ Reciprocal Divide

| Magnitude Residue

⌊ Floor Minimum

⌈ Ceiling Maximum

* Exponential Power

⍟ Natural Logarithm Logarithm

○ Pi Times Circular

! Factorial Binomial

~ Not $

? Roll $

∊ Type (See Enlist) $

Chapter 1: Primitive Functions 3

Symbol Monadic Dyadic

^ And

∨ Or

⍲ Nand

⍱ Nor

< Less

≤ Less Or Equal

= Equal

≥ Greater Or Equal

> Greater

≠ Not Equal

$ Dyadic form is not scalar

Monadic Scalar Functions
l The function is applied independently to each simple scalar in its argument.
l The function produces a result with a structure identical to its argument.
l When applied to an empty argument, the function produces an empty result.
With the exception of + and ∊, the type of this result depends on the
function, not on the type of the argument. By definition + and ∊ return a
result of the same type as their arguments.

Example
÷2 (1 4)

0.5 1 0.25

Chapter 1: Primitive Functions 4

Dyadic Scalar Functions
l The function is applied independently to corresponding pairs of simple
scalars in its arguments.

l A simple scalar will be replicated to conform to the structure of the other
argument. If a simple scalar in the structure of an argument corresponds to a
non-simple scalar in the other argument, then the function is applied
between the simple scalar and the items of the non-simple scalar.
Replication of simple scalars is called scalar extension.

l A simple unit is treated as a scalar for scalar extension purposes. A unit is a
single element array of any rank. If both arguments are simple units, the
argument with lower rank is extended.

l The function produces a result with a structure identical to that of its
arguments (after scalar extensions).

l If applied between empty arguments, the function produces a composite
structure resulting from any scalar extensions, with type appropriate to the
particular function. (All scalar dyadic functions return a result of numeric
type.)

Examples
2 3 4 + 1 2 3

3 5 7

2 (3 4) + 1 (2 3)
3 5 7

(1 2) 3 + 4 (5 6)
5 6 8 9

10 × 2 (3 4)
20 30 40

2 4 = 2 (4 6)
1 1 0

(1 1⍴5) - 1 (2 3)
4 3 2

1↑''+⍳0
0

1↑(0⍴⊂' ' (0 0))×''
0 0 0

Note: The Axis operator applies to all scalar dyadic functions.

Chapter 1: Primitive Functions 5

Mixed Functions
Mixed rank functions are summarised in Table 2. For convenience, they are sub-
divided into five classes:

Table 2: Mixed rank functions

Structural These functions change the structure of the arguments in
some way.

Selection These functions select elements from an argument.

Selector These functions identify specific elements by a Boolean map
or by an ordered set of indices.

Miscellaneous These functions transform arguments in some way, or provide
information about the arguments.

Special These functions have special properties.

In general, the structure of the result of a mixed primitive function is different from
that of its arguments.

Scalar extension may apply to some, but not all, dyadic mixed functions.

Mixed primitive functions are not pervasive. The function is applied to elements of
the arguments, not necessarily independently.

Examples
'CAT' 'DOG' 'MOUSE'⍳⊂'DOG'

2
3↑ 1 'TWO' 3 'FOUR'

1 TWO 3

In the following tables, note that:

l [] Implies axis specification is optional
l $ This function is in another class

Chapter 1: Primitive Functions 6

Table 3: Structural Primitive Functions
Symbol Monadic Dyadic

⍴ $ Reshape

, Ravel [] Catenate/Laminate[]

⍪ Table Catenate First / Laminate []

⌽ Reverse [] Rotate []

⊖ Reverse First [] Rotate First []

⍉ Transpose Transpose

↑ Mix/Disclose (First) [] $

↓ Split [] $

⊂ Enclose [] Partitioned Enclose []

⊆ Nest Partition []

∊ Enlist (See Type) $

Table 4: Selection Primitive Functions
Symbol Monadic Dyadic

⊃ Disclose /Mix Pick

↑ $ Take []

↓ $ Drop []

/ Replicate []

⌿ Replicate First []

\ Expand []

⍀ Expand First []

~ $ Without (Excluding)

∩ Intersection

∪ Unique Union

⊣ Same Left

⊢ Same Right

Chapter 1: Primitive Functions 7

Table 5: Selector Primitive Functions
Symbol Monadic Dyadic

⍳ Index Generator Index Of

⍸ Where Interval Index

∊ $ Membership

⍋ Grade Up Grade Up

⍒ Grade Down Grade Down

? $ Deal

⍷ Find

Table 6: Miscellaneous Primitive Functions
Symbol Monadic Dyadic

⍴ Shape $

≡ Depth Match

≢ Tally Not Match

⍎ Execute Execute

⍕ Format Format

⊥ Decode (Base)

⊤ Encode (Representation)

⌹ Matrix Divide Matrix Inverse

Table 7: Special Primitive Functions
Symbol Monadic Dyadic

→ Abort

→ Branch

← Assignment

[I]← Assignment(Indexed)

(I)← Assignment(Selective)

[] Indexing

Chapter 1: Primitive Functions 8

Conformability
The arguments of a dyadic function are said to be CONFORMABLE if the shape of
each argument meets the requirements of the function, possibly after scalar extension.

Fill Elements
Some primitive functions may include fill elements in their result. The fill element
for an array is the enclosed type of the disclose of the array (⊂∊⊃Y for array Y with
⎕ML←0). The Type function (∊ with ⎕ml←0) replaces a numeric value with zero and
a character value with ' '.

The Disclose function (⊃) returns the first item of an array. If the array is empty, ⊃Y is
the PROTOTYPE of Y. The prototype is the type of the first element of the original
array.

Primitive functions which may return an array including fill elements are Expand (\
or ⍀), Replicate (/ or ⌿), Reshape (⍴) and Take (↑).

Examples
ML←0
∊⍳5

0 0 0 0 0

∊⊃(⍳3)('ABC')
0 0 0

⊂∊⊃(⍳3)('ABC')
0 0 0

⊂∊⊃⊂(⍳3)('ABC')
0 0 0

A←'ABC' (1 2 3)
A←0⍴A
⊂∊⊃A

' '=⊂∊⊃A
1 1 1

Chapter 1: Primitive Functions 9

Axis Operator
The axis operator may be applied to all scalar dyadic primitive functions and certain
mixed primitive functions. An integer axis identifies a specific axis along which the
function is to be applied to one or both of its arguments. If the primitive function is
to be applied without an axis specification, a default axis is implied, either the first or
last.

Example
1 0 1/[1] 3 2⍴⍳6

1 2
5 6

1 2 3+[2]2 3⍴10 20 30
11 22 33
11 22 33

Sometimes the axis value is fractional, indicating that a new axis or axes are to be
created between the axes identified by the lower and upper integer bounds of the
value (either of which might not exist).

Example
'NAMES',[0.5]'='

NAMES
=====

⎕IO is an implicit argument of an axis specification.

Chapter 1: Primitive Functions 10

Abort →

This is a special case of the Branch function used in the niladic sense. If it occurs in a
statement it must be the only symbol in an expression or the only symbol forming an
expression in a text string to be executed by ⍎. It clears the most recently suspended
statement and all of its pendent statements from the state indicator.

The Abort function has no explicit result. The function is not in the function domain
of operators.

Examples
∇ F

[1] 'F[1]'
[2] G
[3] 'F[3]'

∇

∇ G
[1] 'G[1]'
[2] →
[3] 'G[3]'

∇

F
F[1]
G[1]

⎕VR'VALIDATE'
∇ VALIDATE

[1] →(12=1↑⎕AI)⍴0 ⋄ 'ACCOUNT NOT AUTHORISED' ⋄ →
∇

VALIDATE
ACCOUNT NOT AUTHORISED

1↑⎕AI
52

Chapter 1: Primitive Functions 11

Add R←X+Y

Ymust be numeric. Xmust be numeric. R is the arithmetic sum of X and Y. R is
numeric. This function is also known as Plus.

Examples
1 2 + 3 4

4 6

1 2 + 3,⊂4 5
4 6 7

1J1 2J2 + 3J3
4J4 5J5

¯5 + 4J4 5J5
¯1J4 0J5

Chapter 1: Primitive Functions 12

And, Lowest Common Multiple R←X^Y

Case 1: X and Y are Boolean
R is Boolean is determined as follows:

X Y R

0 0 0
0 1 0
1 0 0
1 1 1

Note that the ASCII caret (^) will also be interpreted as an APLAnd (^).

Example
0 1 0 1 ^ 0 0 1 1

0 0 0 1

Case 2: Either or both X and Y are numeric (non-Boolean)
R is the lowest common multiple of X and Y. Note that in this case, ⎕CT and ⎕DCT
are implicit arguments.

Example
15 1 2 7 ^ 35 1 4 0

105 1 4 0

2 3 4 ∧ 0j1 1j2 2j3
0J2 3J6 8J12

2j2 2j4 ∧ 5j5 4j4
10J10 ¯4J12

Chapter 1: Primitive Functions 13

Assignment X←Y

Assignment allocates the result of the expression Y to the name or names in X.

If Y is an array expression, Xmust contain one or more names which are variables,
system variables, or are undefined. Following assignment, the name(s) in X become
variable(s) with value(s) taken from the result of the expression Y.

If X contains a single name, the variable assumes the value of Y. If X contains
multiple names then Y can be a single-item array of any rank (including a scalar) or a
vector. If Y is a single-item array, the scalar value ⊃Y is assigned to all names in X.
Otherwise, each element of Y is assigned to the corresponding name in X. Although
not mandatory, Dyalog recommends that the names in X are enclosed in parentheses
to reduce potential ambiguity in assignment statements.

The assignment arrow (or specification arrow) is often read as 'Is' or 'Gets'.

Examples of single assignment
A←2.3
A

2.3

A←⍳3
A

1 2 3

Examples of multiple assignment using parentheses
(A B)←2
A

2
B

2

(P ⎕IO Q)←'TEXT' 1 (1 2 3)
P

TEXT
⎕IO

1
Q

1 2 3

Chapter 1: Primitive Functions 14

Example of multiple assignment without parentheses
year month day←2017 05 24
day

24
month

5
year

2017

Implementation note: erroneous expressions such as var 3←5 will result in 5 being
assigned to var, even though a SYNTAX ERROR will be generated. In the case of
(var 3)←5 no assignment will be made.

Pass-through assignments are permitted. The value of Y is carried through each
assignment:

I←J←K←0
I,J,K

0 0 0

Function Assignment
If Y is a function expression, Xmust be a single name which is either undefined, or is
the name of an existing function or defined operator. Xmay not be the name of a
system function, or a primitive symbol.

Examples
PLUS←+
PLUS

+

SUM←+/
SUM

+/

MEAN←{(+/⍵)÷⍴⍵}

Chapter 1: Primitive Functions 15

Namespace Reference Assignment
If an expression evaluates to a namespace reference, or ref, you may assign it to a
name. A name assigned to a simple scalar ref, has name class 9, whereas one assigned
to an array containing refs has name class 2.

'f1'⎕WC'Form'
'ns1' ⎕NS ''

N←ns1
⎕NC'N' ⍝ name class of a scalar ref

9
F←f1
⎕NC'F' ⍝ name class of a scalar ref

9
refs←N F ⍝ vector of refs.
⎕NC'refs' ⍝ nameclass of vector.

2
F2←2⊃refs
⎕NC 'F2'

9

Re-Assignment
A name that already exists may be assigned a new value if the assignment will not
alter its name class, or will change it from 2 to 9 or vice versa. The table of permitted
re-assignments is as follows:

Ref Variable Function Operator

Ref Yes Yes

Variable Yes Yes

Function Yes Yes

Operator Yes Yes

Chapter 1: Primitive Functions 16

Assignment (Indexed) {R}←X[I]←Y

Indexed Assignment is the Assignment function modified by the Indexing function.
The phrase [I]← is treated as the function for descriptive purposes.

Ymay be any array. Xmay be the name of any array or a selection from a named
array (EXP X)[I]←Y, see Assignment (Selective) on page 21. Imust be a valid
index specification. The shape of Ymust conform with the shape (implied) of the
indexed structure defined by I. If Y is a scalar or a 1-element vector it will be
extended to conform. A side effect of Indexed Assignment is to change the value of
the indexed elements of X.

R is the value of Y. If the result is not explicitly assigned or used it is suppressed.

⎕IO is an implicit argument of Indexed Assignment.

Three forms of indexing are permitted.

Simple Indexed Assignment
For vector X, I is a simple integer array whose items are from the set ⍳⍴R. Elements
of X identified by index positions I are replaced by corresponding elements of Y.

Examples
+A←⍳5

1 2 3 4 5

A[2 3]←10 ⋄ A
1 10 10 4 5

The last-most element of Y is assigned when an index is repeated in I:

A[2 2]←100 101 ⋄ A
1 101 10 4 5

For matrix X, I is composed of two simple integer arrays separated by the semicolon
character (;). The arrays select indices from the rows and columns of X respectively.

Chapter 1: Primitive Functions 17

Examples
+B←2 3⍴'REDSUN'

RED
SUN

B[2;2]←'O' ⋄ B
RED
SON

For higher-rank array X, I is a series of simple integer arrays with adjacent arrays
separated by a single semicolon character (;). Each array selects indices from an axis
of X taken in row-major order.

Examples
C

11 12 13
14 15 16

21 22 23
24 25 26

C[1;1;3]←103 ⋄ C
11 12 103
14 15 16

21 22 23
24 25 26

An indexing array may be ELIDED. That is, if an indexing array is omitted from the
Kth axis, the indexing vector ⍳(⍴X)[K] is implied:

C[;1;2 3]←2 2⍴112 113 122 123 ⋄ C
11 112 113
14 15 16

21 122 123
24 25 26

C[;;]←0 ⋄ C
0 0 0
0 0 0

0 0 0
0 0 0

Chapter 1: Primitive Functions 18

Choose Indexed Assignment
The index specification I is a non-simple integer array. Each item identifies a single
element of X by a set of indices with one element per axis of X in row-major order.

Examples
C

11 12 13 14
21 22 23 24

C[⊂1 1]←101 ⋄ C
101 12 13 14
21 22 23 24

C[(1 2) (2 3)]←102 203 ⋄ C
101 102 13 14
21 22 203 24

C[2 2⍴(1 3)(2 4)(2 1)(1 4)]←2 2⍴103 204 201 104 ⋄ C
101 102 103 104
201 22 203 204

A scalar may be indexed by the enclosed empty vector:

S
10

S[⊂⍳0]←⊂'VECTOR' ⋄ S
VECTOR

S[⊂⍳0]←5 ⋄ S
5

Choose Indexed Assignment may be used very effectively in conjunction with Index
Generator (⍳) and Structural functions in order to assign into an array:

C
11 12 13 14
21 22 23 24

⍳⍴C
1 1 1 2 1 3 1 4
2 1 2 2 2 3 2 4

C[1 1⍉⍳⍴C]←1 2 ⋄ C
1 12 13 14

21 2 23 24

C[2 ¯1↑⍳⍴C]←99 ⋄ C
1 12 13 99

21 2 23 99

Chapter 1: Primitive Functions 19

Reach Indexed Assignment
The index specification I is a non-simple integer array, each of whose items reach
down to a nested element of X. The items of an item of I are simple vectors (or
scalars) forming sets of indices that index arrays at successive levels of X starting at
the top-most level. A set of indices has one element per axis at the respective level of
nesting of X in row-major order.

Examples
D←(2 3⍴⍳6)(2 2⍴'SMITH' 'JONES' 'SAM' 'BILL')

D
1 2 3 SMITH JONES
4 5 6 SAM BILL

≡J←⊂2 (1 2)
¯3

D[J]←⊂'WILLIAMS' ⋄ D
1 2 3 SMITH WILLIAMS
4 5 6 SAM BILL

D[(1 (1 1))(2 (2 2) 1)]←10 'W' ⋄ D
10 2 3 SMITH WILLIAMS
4 5 6 SAM WILL

E
GREEN YELLOW RED

E[⊂2 1]←'M' ⋄ E
GREEN MELLOW RED

The context of indexing is important. In the last example, the indexing method is
determined to be Reach rather than Choose since E is a vector, not a matrix as would
be required for Choose. Observe that:

⊂2 1 ←→ ⊂(⊂2),(⊂1)

Note that for any array A, A[⊂⍬] represents a scalar quantity, which is the whole of
A, so:

A←5⍴0
A

0 0 0 0 0
A[⊂⍬]←1
A

1

Chapter 1: Primitive Functions 20

Combined Indexed and Selective Assignment
Instead of X being a name, it may be a selection from a named array, and the
statement is of the form (EXP X)[I]←Y.

MAT←4 3⍴'Hello' 'World'
(2↑¨MAT)[1 2;]←'#'
MAT

##llo ##rld ##llo
##rld ##llo ##rld
Hello World Hello
World Hello World

MAT←4 3⍴'Hello' 'World'
⎕ML←1 ⍝ ∊ is Enlist

(∊MAT)[2×⍳⌊0.5×⍴∊MAT]←'#'
MAT

H#l#o #o#l# H#l#o
#o#l# H#l#o #o#l#
H#l#o #o#l# H#l#o
#o#l# H#l#o #o#l#

Chapter 1: Primitive Functions 21

Assignment (Selective) (EXP X)←Y

X is the name of a variable in the workspace, possibly modified by the indexing
function (EXP X[I])←Y, see Assignment (Indexed) on page 16. EXP is an
expression that selects elements of X. Y is an array expression. The result of the
expression Y is allocated to the elements of X selected by EXP. Note that Xmay refer
to a single name only.

The following functions may appear in the selection expression. Where appropriate
these functions may be used with axis [] and with the Each operator ¨.

Functions for Selective Assignment
↑ Take
↓ Drop
, Ravel
⍪ Table
⌽⊖ Reverse, Rotate
⍴ Reshape
⊃ Disclose, Pick
⍉ Transpose (Monadic and Dyadic)
/⌿ Replicate
\⍀ Expand
⌷ Index
∊ Enlist (⎕ML≥1)

Note: Mix and Split (monadic ↑ and ↓), Type (monadic ∊ when ⎕ML<1) and
Membership (dyadic ∊) may not be used in the selection expression.

Examples
A←'HELLO'
((A∊'AEIOU')/A)←'*'

A
H*LL*

Z←3 4⍴⍳12
(5↑,Z)←0

Z
0 0 0 0
0 6 7 8
9 10 11 12

Chapter 1: Primitive Functions 22

MAT←3 3⍴⍳9
(1 1⍉MAT)←0

MAT
0 2 3
4 0 6
7 8 0

⎕ML←1⍝ so ∊ is Enlist
names←'Andy' 'Karen' 'Liam'
(('a'=∊names)/∊names)←'*'
names

Andy K*ren Li*m

Each Operator
The functions listed in the table above may also be used with the Each Operator ¨.

Examples
A←'HELLO' 'WORLD'
(2↑¨A)←'*'
A

**LLO **RLD

A←'HELLO' 'WORLD'
((A='O')/¨A)←'*'
A

HELL* W*RLD

A←'HELLO' 'WORLD'
((A∊¨⊂'LO')/¨A)←'*'
A

HE*** W*R*D

Bracket Indexing
Bracket indexing may also be applied to the expression on the left of the assignment
arrow.

Examples
MAT←4 3⍴'Hello' 'World'
(¯2↑¨MAT[;1 3])←'$'
MAT

Hel$$ World Hel$$
Wor$$ Hello Wor$$
Hel$$ World Hel$$
Wor$$ Hello Wor$$

Chapter 1: Primitive Functions 23

Binomial R←X!Y

X and Ymay be any numbers except that if Y is a negative integer then Xmust be a
whole number (integer). R is numeric. An element of R is integer if corresponding
elements of X and Y are integers. Binomial is defined in terms of the function
Factorial for positive integer arguments:

X!Y ←→ (!Y)÷(!X)×!Y-X

For other arguments, results are derived smoothly from the Beta function:

Beta(X,Y) ←→ ÷Y×(X-1)!X+Y-1

For positive integer arguments, R is the number of selections of X things from Y
things.

Example
1 1.2 1.4 1.6 1.8 2!5

5 6.105689248 7.219424686 8.281104786 9.227916704 10

2!3j2
1J5

Chapter 1: Primitive Functions 24

Branch →Y

Ymay be a scalar or vector which, if not empty, has a simple numeric scalar as its first
element. The function has no explicit result. It is used to modify the normal
sequence of execution of expressions or to resume execution after a statement has
been interrupted. Branch is not in the function domain of operators.

The following distinct usages of the branch function occur:

Entered in a Statement
in a Defined Function Entered in Immediate Execution Mode

→LINE
Continue with the
specific line

Restart execution at the specific line of
the most recently suspended function

→⍳0
Continue with the next
expression No effect

In a defined function, if Y is non-empty then the first element in Y specifies a
statement line in the defined function to be executed next. If the line does not exist,
then execution of the function is terminated. For this purpose, line 0 does not exist.
(Note that statement line numbers are independent of the index origin ⎕IO).

If Y is empty, the branch function has no effect. The next expression is executed on
the same line, if any, or on the next line if not. If there is no following line, the
function is terminated.

The :GoTo statement may be used in place of Branch in a defined function.

Example
∇ TEST

[1] 1
[2] →4
[3] 3
[4] 4

∇

TEST
1
4

In general it is better to branch to a LABEL than to a line number. A label occurs in
a statement followed by a colon and is assigned the value of the statement line
number when the function is defined.

Chapter 1: Primitive Functions 25

Example
∇ TEST

[1] 1
[2] →FOUR
[3] 3
[4] FOUR:4

∇

The previous examples illustrate unconditional branching. There are numerous APL
idioms which result in conditional branching. Some popular idioms are identified in
the following table:

Branch Expression Comment

→TEST/L1
Branches to label L1 if TEST results in 1 but
not if TEST results in 0.

→TEST⍴L1 Similar to above.

TEST↑L1 Similar to above.

→L1⍴⍨TEST Similar to above.

→L1⌈⍳TEST Similar to above but only if ⎕IO←→1.

→L1×⍳TEST Similar to above but only if ⎕IO←→1.

→(L1,L2,L3)[N] Unconditional branch to a selected label.

→
(T1,T2,T3)/L1,L2,L3

Branches to the first selected label dependent on
tests T1,T2,T3. If all tests result in 0, there is no
branch.

→N⌽L1,L2,L3
Unconditional branch to the first label after
rotation.

A branch expression may occur within a statement including ⋄ separators:

[5] →NEXT⍴⍨TEST ⋄ A←A+1 ⋄ →END
[6] NEXT:

In this example, the expressions 'A←A+1' and '→END' are executed only if TEST
returns the value 1. Otherwise control branches to label NEXT.

In immediate execution mode, the branch function permits execution to be continued
within the most recently suspended function, if any, in the state indicator. If the state
indicator is empty, or if the argument Y is the empty vector, the branch expression has
no effect. If a statement line is specified which does not exist, the function is
terminated. Otherwise, execution is restarted from the beginning of the specified
statement line in the most recently suspended function.

Chapter 1: Primitive Functions 26

Example
∇ F

[1] 1
[2] 2
[3] 3

∇

2 ⎕STOP'F'
F

1

F[2]
)SI

#.F[2]*
→2

2
3

The system constant ⎕LC returns a vector of the line numbers of statement lines in the
state indicator, starting with that in the most recently suspended function. It is
convenient to restart execution in a suspended state by the expression:

→⎕LC

Catenate/Laminate R←X,[K]Y

Ymay be any array. Xmay be any array. The axis specification is optional. If
specified, Kmust be a numeric scalar or 1-element vector which may have a fractional
value. If not specified, the last axis is implied.

The form R←X⍪Ymay be used to imply catenation along the first axis.

Two cases of the function catenate are permitted:

1. With an integer axis specification, or implied axis specification.
2. With a fractional axis specification, also called laminate.

Catenation with Integer or Implied Axis Specification
The arrays X and Y are joined along the required axis to form array R. A scalar is
extended to the shape of the other argument except that the required axis is restricted
to a unit dimension. X and Ymust have the same shape (after extension) except
along the required axis, or one of the arguments may have rank one less than the
other, provided that their shapes conform to the prior rule after augmenting the array
of lower rank to have a unit dimension along the required axis. The rank of R is the
greater of the ranks of the arguments, but not less than 1.

Chapter 1: Primitive Functions 27

Examples
'FUR','LONG'

FURLONG

1,2
1 2

(2 4⍴'THISWEEK')⍪'='
THIS
WEEK
====

S,[1]+⌿S←2 3⍴⍳6
1 2 3
4 5 6
5 7 9

If, after extension, exactly one of X and Y have a length of zero along the joined axis,
then the data type of R will be that of the argument with a non-zero length.
Otherwise, the data type of R will be that of X.

Lamination with Fractional Axis Specification
The arrays X and Y are joined along a new axis created before the ⌈Kth axis. The
new axis has a length of 2. Kmust exceed ⎕IO (the index origin) minus 1, and K
must be less than ⎕IO plus the greater of the ranks of X and Y. A scalar argument is
extended to the shape of the other argument. Otherwise X and Ymust have the same
shape.

The rank of R is one plus the greater of the ranks of X and Y.

Examples
'HEADING',[0.5]'-'

HEADING

'NIGHT',[1.5]'*'
N*
I*
G*
H*
T*

⎕IO←0
'HEADING',[¯0.5]'-'

HEADING

Chapter 1: Primitive Functions 28

Catenate First R←X⍪[K]Y

The form R←X⍪Y implies catenation along the first axis whereas the form R←X,Y
implies catenation along the last axis (columns). See Catenate/Laminate above.

Ceiling R←⌈Y

Ceiling is defined in terms of Floor as ⌈Y←→-⌊-Y

Ymust be numeric.

If an element of Y is real, the corresponding element of R is the least integer greater
than or equal to the value of Y.

If an element of Y is complex, the corresponding element of R depends on the
relationship between the real and imaginary parts of the numbers in Y.

Examples
⌈¯2.3 0.1 100 3.3

¯2 1 100 4

⌈1.2j2.5 1.2j¯2.5
1J3 1J¯2

For further explanation, see Floor on page 51.

⎕CT is an implied argument of Ceiling.

Chapter 1: Primitive Functions 29

Circular R←X○Y

Ymust be numeric. Xmust be an integer in the range ¯12 ≤ X ≤ 12. R is numeric.

X determines which of a family of trigonometric, hyperbolic, Pythagorean and
complex functions to apply to Y, from the following table. Note that when Y is
complex, a and b are used to represent its real and imaginary parts, while θ
represents its phase.

(-X) ○ Y X X ○ Y

(1-Y*2)*.5 0 (1-Y*2)*.5

Arcsin Y 1 Sine Y

Arccos Y 2 Cosine Y

Arctan Y 3 Tangent Y

Y=¯1:0
Y≠¯1:(Y+1)×((Y-1)÷Y+1)*0.5

4 (1+Y*2)*.5

Arcsinh Y 5 Sinh Y

Arccosh Y 6 Cosh Y

Arctanh Y 7 Tanh Y

-8○Y 8 (-1+Y*2)*0.5

Y 9 a

+Y 10 |Y

Y×0J1 11 b

*Y×0J1 12 θ

Examples
0 ¯1 ○ 1

0 1.570796327

1○(PI←○1)÷2 3 4
1 0.8660254038 0.7071067812

2○PI÷3
0.5

Chapter 1: Primitive Functions 30

9 11○3.5J¯1.2
3.5 ¯1.2

9 11∘.○3.5J¯1.2 2J3 3J4
3.5 2 3

¯1.2 3 4

¯4○¯1
0

Conjugate R←+Y

If Y is complex, R is Y with the imaginary part of all elements negated.

If Y is real or non-numeric, R is the same array unchanged, although ⊣ is faster. See
Same on page 123.

Examples
+3j4

3J¯4
+1j2 2j3 3j4

1J¯2 2J¯3 3J¯4

3j4++3j4
6

3j4×+3j4
25

+A←⍳5
1 2 3 4 5

+⎕EX'A'
1

Chapter 1: Primitive Functions 31

Deal R←X?Y

Ymust be a simple scalar or 1-element vector containing a non-negative integer. X
must be a simple scalar or 1-element vector containing a non-negative integer and
X≤Y.

R is an integer vector obtained by making X random selections from ⍳Y without
repetition.

Examples
13?52

7 40 24 28 12 3 36 49 20 44 2 35 1

13?52
20 4 22 36 31 49 45 28 5 35 37 48 40

⎕IO and ⎕RL are implicit arguments of Deal. A side effect of Deal is to change the
value of ⎕RL. See Random Link on page 540.

Chapter 1: Primitive Functions 32

Decode R←X⊥Y

Ymust be a simple numeric array. Xmust be a simple numeric array. R is the
numeric array which results from the evaluation of Y in the number system with radix
X.

X and Y are conformable if the length of the last axis of X is the same as the length of
the first axis of Y. A scalar or 1-element vector is extended to a vector of the required
length. If the last axis of X or the first axis of Y has a length of 1, the array is
extended along that axis to conform with the other argument.

The shape of R is the catenation of the shape of X less the last dimension with the
shape of Y less the first dimension. That is:

⍴R ←→ (¯1↓⍴X),1↓⍴Y

For vector arguments, each element of X defines the ratio between the units for
corresponding pairs of elements in Y. The first element of X has no effect on the
result.

This function is also known as Base Value.

Examples
60 60⊥3 13

193

0 60⊥3 13
193

60⊥3 13
193

2⊥1 0 1 0
10

Chapter 1: Primitive Functions 33

Polynomial Evaluation
If X is a scalar and Y a vector of length n, decode evaluates the polynomial(Index
origin 1):

Examples
2⊥1 2 3 4

26
3⊥1 2 3 4

58
1j1⊥1 2 3 4

5J9

For higher-rank array arguments, each of the vectors along the last axis of X is taken
as the radix vector for each of the vectors along the first axis of Y.

Examples
M

0 0 0 0 1 1 1 1
0 0 1 1 0 0 1 1
0 1 0 1 0 1 0 1

A
1 1 1
2 2 2
3 3 3
4 4 4

A⊥M
0 1 1 2 1 2 2 3
0 1 2 3 4 5 6 7
0 1 3 4 9 10 12 13
0 1 4 5 16 17 20 21

Scalar extension may be applied:

2⊥M
0 1 2 3 4 5 6 7

Extension along a unit axis may be applied:

+A←2 1⍴2 10
2

10
A⊥M

0 1 2 3 4 5 6 7
0 1 10 11 100 101 110 111

Chapter 1: Primitive Functions 34

Depth (⎕ML) R←≡Y

Ymay be any array. R is the maximum number of levels of nesting of Y. A simple
scalar (rank-0 number, character or namespace-reference) has a depth of 0.

A higher rank array, all of whose items are simple scalars, is termed a simple array
and has a depth of 1. An array whose items are not all simple scalars is nested and has
a depth 1 greater than that of its most deeply nested item.

Y is of uniform depth if it is simple or if all of its items have the same uniform depth.

If ⎕ML<2 and Y is not of uniform depth then R is negated (therefore, when ⎕ML<2, a
negative value of R indicates non-uniform depth).

Examples
≡1

0
≡'A'

0
≡'ABC'

1
≡1 'A'

1

⎕ML←0

≡A←(1 2)(3 (4 5)) ⍝ Non-uniform array
¯3

≡¨A ⍝ A[1] is uniform, A[2] is non-uniform
1 ¯2

≡¨¨A
0 0 0 1

⎕ML←2

≡A
3

≡¨A
1 2

≡¨¨A
0 0 0 1

Chapter 1: Primitive Functions 35

Direction (Signum) R←×Y

Ymay be any numeric array.

Where an element of Y is real, the corresponding element of R is an integer whose
value indicates whether the value is negative (¯1), zero (0) or positive (1).

Where an element of Y is complex, the corresponding element of R is a number with
the same phase but with magnitude (absolute value) 1. It is equivalent to Y÷|Y.

Examples
×¯15.3 0 101

¯1 0 1

×3j4 4j5
0.6J0.8 0.6246950476J0.7808688094

{⍵÷|⍵}3j4 4j5
0.6J0.8 0.6246950476J0.7808688094

|×3j4 4j5
1 1

Chapter 1: Primitive Functions 36

Disclose (⎕ML) R←⊃Y or R←↑Y

The symbol chosen to represent Disclose depends on the current Migration Level.

If ⎕ML<2, Disclose is represented by the symbol: ⊃.

If ⎕ML≥2, Disclose is represented by the symbol: ↑.

Ymay be any array. R is an array. If Y is non-empty, R is the value of the first item of
Y taken in ravel order. If Y is empty, R is the prototype of Y.

Disclose is the inverse of Enclose. The identity R←→⊃⊂R holds for all R. Disclose is
also referred to as First.

Examples
⊃1

1

⊃2 4 6
2

⊃'MONDAY' 'TUESDAY'
MONDAY

⊃(1 (2 3))(4 (5 6))
1 2 3

⊃⍳0
0

' '=⊃''
1

⊃1↓⊂1,⊂2 3
0 0 0

Chapter 1: Primitive Functions 37

Divide R←X÷Y

Ymust be a numeric array. Xmust be a numeric array. R is the numeric array
resulting from X divided by Y. System variable ⎕DIV is an implicit argument of
Divide.

If ⎕DIV=0 and Y=0 then if X=0, the result of X÷Y is 1; if X≠0 then X÷Y is a DOMAIN
ERROR.

If ⎕DIV=1 and Y=0, the result of X÷Y is 0 for all values of X.

Examples
2 0 5÷4 0 2

0.5 1 2.5

3j1 2.5 4j5÷2 1j1 .2
1.5J0.5 1.25J¯1.25 20J25

⎕DIV←1
2 0 5÷4 0 0

0.5 0 0

Chapter 1: Primitive Functions 38

Drop R←X↓Y

Ymay be any array. Xmust be a simple scalar or vector of integers. If X is a scalar, it
is treated as a one-element vector. If Y is a scalar, it is treated as an array whose shape
is (⍴X)⍴1. After any scalar extensions, the shape of Xmust be less than or equal to
the rank of Y. Any missing trailing items in X default to 0.

R is an array with the same rank as Y but with elements removed from the vectors
along each of the axes of Y. For the Ith axis:

l if X[I] is positive, all but the first X[I] elements of the vectors result
l if X[I] is negative, all but the last X[I] elements of the vectors result

If the magnitude of X[I] exceeds the length of the Ith axis, the result is an empty
array with zero length along that axis.

Examples
4↓'OVERBOARD'

BOARD

¯5↓'OVERBOARD'
OVER

⍴10↓'OVERBOARD'
0

M
ONE
FAT
FLY

0 ¯2↓M
O
F
F

¯2 ¯1↓M
ON

1↓M
FAT
FLY

M3←2 3 4⍴⎕A

1 1↓M3
QRST
UVWX

¯1 ¯1↓M3
ABCD
EFGH

Chapter 1: Primitive Functions 39

Drop with Axes R←X↓[K]Y

Ymay be any non-scalar array. Xmust be a simple integer scalar or vector. K is a
vector of zero or more axes of Y.

R is an array of the elements of Y with the first or last X[i] elements removed.
Elements are removed from the beginning or end of Y according to the sign of X[i].

The rank of R is the same as the rank of Y:

⍴⍴R ←→ ⍴⍴Y

The size of each axis of R is determined by the corresponding element of X:

(⍴R)[,K] ←→ 0⌈(⍴Y)[,K]-|,X

Examples
⎕←M←2 3 4⍴⍳24

1 2 3 4
5 6 7 8
9 10 11 12

13 14 15 16
17 18 19 20
21 22 23 24

1↓[2]M
5 6 7 8
9 10 11 12

17 18 19 20
21 22 23 24

2↓[3]M
3 4
7 8

11 12

15 16
19 20
23 24

2 1↓[3 2]M
7 8

11 12

19 20
23 24

Chapter 1: Primitive Functions 40

Enclose R←⊂Y

Ymay be any array. R is a scalar array whose item is the array Y. If Y is a simple
scalar, R is the simple scalar unchanged. Otherwise, R has a depth whose magnitude
is one greater than the magnitude of the depth of Y.

Examples
⊂1

1

⊂'A'
A

⊂1 2 3
1 2 3

⊂1,⊂'CAT'
1 CAT

⊂2 4⍴⍳8
1 2 3 4
5 6 7 8

⊂⍳0

⊂⊂⍳0

⊂⊂10
10

See also: Enclose with Axes below.

Chapter 1: Primitive Functions 41

Enclose with Axes R←⊂[K]Y

Ymay be any array. K is a vector of zero or more axes of Y. R is an array of the
elements of Y enclosed along the axes K. The shape of R is the shape of Y with the K
axes removed:

⍴R ←→ (⍴Y)[(⍳⍴⍴R)~K]

The shape of each element of R is the shape of the Kth axes of Y:

⍴⊃R ←→ (⍴Y)[,K]

Examples
]display A←2 3 4⍴'DUCKSWANBIRDWORMCAKESEED'

┌┌→───┐
↓↓DUCK│
││SWAN│
││BIRD│
││ │
││WORM│
││CAKE│
││SEED│
└└────┘

]display ⊂[3]A
┌→─────────────────────┐
↓ ┌→───┐ ┌→───┐ ┌→───┐ │
│ │DUCK│ │SWAN│ │BIRD│ │
│ └────┘ └────┘ └────┘ │
│ ┌→───┐ ┌→───┐ ┌→───┐ │
│ │WORM│ │CAKE│ │SEED│ │
│ └────┘ └────┘ └────┘ │
└∊─────────────────────┘

]display ⊂[2 3]A
┌→──────────────┐
│ ┌→───┐ ┌→───┐ │
│ ↓DUCK│ ↓WORM│ │
│ │SWAN│ │CAKE│ │
│ │BIRD│ │SEED│ │
│ └────┘ └────┘ │
└∊──────────────┘

]display ⊂[1 3]A
┌→─────────────────────┐
│ ┌→───┐ ┌→───┐ ┌→───┐ │
│ ↓DUCK│ ↓SWAN│ ↓BIRD│ │
│ │WORM│ │CAKE│ │SEED│ │
│ └────┘ └────┘ └────┘ │
└∊─────────────────────┘

Chapter 1: Primitive Functions 42

Encode R←X⊤Y

Ymust be a simple numeric array. Xmust be a simple numeric array. R is the
numeric array which results from the representation of Y in the number system
defined by X.

The shape of R is (⍴X),⍴Y (the catenation of the shapes of X and Y).

If X is a vector or a scalar, the result for each element of Y is the value of the element
expressed in the number system defined by radix X. If Y is greater than can be
expressed in the number system, the result is equal to the representation of the residue
(×/X)|Y. If the first element of X is 0, the value will be fully represented.

This function is also known as Representation.

Examples
10⊤5 15 125

5 5 5

0 10⊤5 15 125
0 1 12
5 5 5

Chapter 1: Primitive Functions 43

If X is a higher-rank array, each of the vectors along the first axis of X is used as the
radix vector for each element of Y.

Examples
A

2 0 0
2 0 0
2 0 0
2 0 0
2 8 0
2 8 0
2 8 16
2 8 16

A⊤75
0 0 0
1 0 0
0 0 0
0 0 0
1 0 0
0 1 0
1 1 4
1 3 11

The example shows binary, octal and hexadecimal representations of the decimal
number 75.

Examples
0 1⊤1.25 10.5

1 10
0.25 0.5

4 13⊤13?52
3 1 0 2 3 2 0 1 3 1 2 3 1

12 2 4 12 1 7 6 3 10 1 0 3 8

⎕IO is not an implicit argument of encode.

Chapter 1: Primitive Functions 44

Enlist (⎕ML≥1) R←∊Y

Migration level must be such that ⎕ML≥1 (otherwise see Type on page 132).

Ymay be any array, R is a simple vector created from all the elements of Y in ravel
order.

Examples
⎕ML←1 ⍝ Migration level 1
MAT←2 2⍴'MISS' 'IS' 'SIP' 'PI' ⋄ MAT

 MISS IS
 SIP PI

∊MAT
MISSISSIPPI

M←1 (2 2⍴2 3 4 5) (6(7 8))
M

1 2 3 6 7 8
4 5

∊M
1 2 3 4 5 6 7 8

Chapter 1: Primitive Functions 45

Equal R←X=Y

Ymay be any array. Xmay be any array. R is Boolean.

⎕CT and ⎕DCT are implicit arguments of Equal.

If X and Y are refs, then R is 1 if they are refs to the same object. If X is a ref and Y is
not, or vice-versa, then R is 0.

If X and Y are character, then R is 1 if they are the same character. If X is character and
Y is numeric, or vice-versa, then R is 0.

If X and Y are numeric, then R is 1 if X and Y are within comparison tolerance of each
other.

For real numbers X and Y, X is considered equal to Y if (|X-Y) is not greater than
⎕CT×(|X)⌈|Y.

For complex numbers X=Y is 1 if the magnitude of X-Y does not exceed ⎕CT times
the larger of the magnitudes of X and Y; geometrically, X=Y if the number smaller in
magnitude lies on or within a circle centred on the one with larger magnitude, having
radius ⎕CT times the larger magnitude.

Chapter 1: Primitive Functions 46

Examples
3=3.1 3 ¯2 ¯3

0 1 0 0

a←2+0j1×⎕CT
a

2J1E¯14
a=2j.00000000000001 2j.0000000000001

1 0

'CAT'='FAT'
0 1 1

'CAT'=1 2 3
0 0 0

'CAT'='C' 2 3
1 0 0

⎕CT←1E¯10
1=1.000000000001

1

1=1.0000001
0

Excluding R←X~Y

Xmust be a scalar or vector. R is a vector of the elements of X excluding those
elements which occur in Y taken in the order in which they occur in X.

Elements of X and Y are considered the same if X≡Y returns 1 for those elements.

⎕CT and ⎕DCT are implicit arguments of Excluding. Excluding is also known as
Without.

Examples
'HELLO'~'GOODBYE'

HLL
'MONDAY' 'TUESDAY' 'WEDNESDAY'~'TUESDAY' 'FRIDAY'

MONDAY WEDNESDAY

5 10 15~⍳10
15

For performance information, see Programming Reference Guide: Search Functions
and Hash Tables.

Chapter 1: Primitive Functions 47

Execute R←{X}⍎Y

Ymust be a simple character scalar or vector containing an APL expression to be
executed. The expression may contain one or more sub-expressions separated by ⋄
(Diamond) characters.

If the result of the expression is used or is assigned to a name, R is the result (if any) of
the last-executed sub-expression and the non-shy results of all preceding expressions
(that are not assigned within the expression) are displayed. Otherwise the unassigned
non-shy results of all of the sub-expressions are displayed.

If the expression is an empty vector or a vector containing only blanks or one that
does not produce a result, then ⍎Y has no value and using or assigning it to a name
will generate VALUE ERROR.

If Y contains a branch expression, the branch is effected in the environment from
which the Execute was invoked, and ⍎Y does not return.

If specified, Xmust be a namespace reference or a simple character scalar or vector
representing the name of a namespace in which the expression is to be executed. If X
is omitted or is an empty character vector, the expression is executed in the current
space.

Examples
⍎'2+2'

4
⍎'1+1 ⋄ 2+2'

2
4

A← ⍎'1+1 ⋄ 2+2'
2

A
4

4=⍎'1+1 ⋄ 2+2'
2
1

⍎'A←2|¯1↑⎕TS ⋄ →0⍴⍨A ⋄ A'
0

A
0

A←⍎''
VALUE ERROR: No result was provided when the context
expected one

A←⍎''
∧
'myspace' ⎕NS''
myspace⍎'A←⍳6'
myspace.A

1 2 3 4 5 6

Chapter 1: Primitive Functions 48

Expand R←X\[K]Y

Ymay be any array. X is a simple integer scalar or vector. The axis specification is
optional. If present, Kmust be a simple integer scalar or 1-element vector. The value
of Kmust be an axis of Y. If absent, the last axis of Y is implied. The form R←X⍀Y
implies the first axis. If Y is a scalar, it is treated as a one-element vector.

If Y has length 1 along the Kth (or implied) axis, it is extended along that axis to
match the number of positive elements in X. Otherwise, the number of positive
elements in Xmust be the length of the Kth (or implied) axis of Y.

R is composed from the sub-arrays along the Kth axis of Y. If X[I] (an element of X)
is the Jth positive element in X, then the Jth sub-array along the Kth axis of Y is
replicated X[I] times. If X[I] is negative, then a sub-array of fill elements of Y is
replicated |X[I] times and inserted in relative order along the Kth axis of the
result. If X[I] is zero, it is treated as the value ¯1. The shape of R is the shape of Y
except that the length of the Kth axis is +/1⌈|X.

Examples
0\⍳0

0

1 ¯2 3 ¯4 5\'A'
A AAA AAAAA

M
1 2 3
4 5 6

1 ¯2 2 0 1\M
1 0 0 2 2 0 3
4 0 0 5 5 0 6

1 0 1⍀M
1 2 3
0 0 0
4 5 6

1 0 1\[1]M
1 2 3
0 0 0
4 5 6

1 ¯2 1\(1 2)(3 4 5)
1 2 0 0 0 0 3 4 5

Chapter 1: Primitive Functions 49

Expand First R←X⍀Y

The form R←X⍀Y implies expansion along the first axis whereas the form R←X\Y
implies expansion along the last axis (columns). See Expand above.

Exponential R←*Y

Ymust be numeric. R is numeric and is the Yth power of e, the base of natural
logarithms.

Example
*1 0

2.718281828 1

*0j1 1j2
0.5403023059J0.8414709848 ¯1.131204384J2.471726672

1+*○0j1 ⍝ Euler Identity
0

Factorial R←!Y

Ymust be numeric excluding negative integers. R is numeric. R is the product of the
first Y integers for positive integer values of Y. For non-integral values of Y, !Y is
equivalent to the gamma function of Y+1.

Examples
!1 2 3 4 5

1 2 6 24 120

!¯1.5 0 1.5 3.3
¯3.544907702 1 1.329340388 8.85534336

!0j1 1j2
0.4980156681J¯0.1549498283 0.1122942423J0.3236128855

Chapter 1: Primitive Functions 50

Find R←X⍷Y

X and Ymay be any arrays. R is a simple Boolean array the same shape as Y which
identifies occurrences of X within Y.

If the rank of X is smaller than the rank of Y, X is treated as if it were the same rank
with leading axes of size 1. For example a vector is treated as a 1-row matrix.

If the rank of X is larger than the rank of Y, no occurrences of X are found in Y.

⎕CT and ⎕DCT are implicit arguments of Find.

Examples
'AN'⍷'BANANA'

0 1 0 1 0 0

'ANA'⍷'BANANA'
0 1 0 1 0 0

'BIRDS' 'NEST'⍷'BIRDS' 'NEST' 'SOUP'
1 0 0

MAT
IS YOU IS
OR IS YOU
ISN'T

'IS'⍷MAT
1 0 0 0 0 0 0 1 0
0 0 0 1 0 0 0 0 0
1 0 0 0 0 0 0 0 0

'IS YOU'⍷MAT
1 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0

Chapter 1: Primitive Functions 51

First (⎕ML) R←⊃Y or R←↑Y

See function Disclose on page 36.

Floor R←⌊Y

Ymust be numeric.

For real numbers, R is the largest integer value less than or equal to Y within the
comparison tolerance ⎕CT.

Examples
⌊¯2.3 0.1 100 3.3

¯3 0 100 3

⌊0.5 + 0.4 0.5 0.6
0 1 1

For complex numbers, R depends on the relationship between the real and imaginary
parts of the numbers in Y.

⌊1j3.2 3.3j2.5 ¯3.3j¯2.5
1J3 3J2 ¯3J¯3

Complex Floor
The following (deliberately) simple function illustrates one way to express the rules
for evaluating complex Floor.

∇ fl←CpxFloor cpxs;a;b
[1] ⍝ Complex floor of scalar complex number (a+ib)
[2] a b←9 11○cpxs
[3] :If 1>(a-⌊a)+b-⌊b
[4] fl←(⌊a)+0J1×⌊b
[5] :Else
[6] :If (a-⌊a)<b-⌊b
[7] fl←(⌊a)+0J1×1+⌊b
[8] :Else
[9] fl←(1+⌊a)+0J1×⌊b
[10] :EndIf
[11] :EndIf

∇

CpxFloor¨1j3.2 3.3j2.5 ¯3.3j¯2.5
1J3 3J2 ¯3J¯3

⎕CT and ⎕DCT are implicit arguments of Floor.

Chapter 1: Primitive Functions 52

Format (Monadic) R←⍕Y

Ymay be any array. R is a simple character array which will display identically to
the display produced by Y. The result is independent of ⎕PW. If Y is a simple
character array, then R is Y.

Example
+B←⍕A←2 6⍴'HELLO PEOPLE'

HELLO
PEOPLE

B ≡ A
1

If Y is a simple numeric scalar, then R is a vector containing the formatted number
without any spaces. A floating point number is formatted according to the system
variable ⎕PP. ⎕PP is ignored when formatting integers.

Examples
⎕PP←5

⍴C←⍕⍳0
0

⍴C←⍕10
2

C
10

⍴C←⍕12.34
5

C
12.34

⍕123456789
123456789

⍕123.456789
123.46

Scaled notation is used if the magnitude of the non-integer number is too large to
represent with ⎕PP significant digits or if the number requires more than five leading
zeroes after the decimal point.

Chapter 1: Primitive Functions 53

Examples
⍕123456.7

1.2346E5

⍕0.0000001234
1.234E¯7

If Y is a simple numeric vector, then R is a character vector in which each element of
Y is independently formatted with a single separating space between formatted
elements.

Example
⍴C←⍕¯123456 1 22.5 ¯0.000000667 5.00001

27

C
¯1.2346E5 1 22.5 ¯6.67E¯7 5

If Y is a simple numeric array rank higher than one, R is a character array with the
same shape as Y except that the last dimension of Y is determined by the length of the
formatted data. The format width is determined independently for each column of Y,
such that:

a. the decimal points for floating point or scaled formats are aligned.
b. the E characters for scaled formats are aligned, with trailing zeros added to

the mantissae if necessary.
c. integer formats are aligned to the left of the decimal point column, if any, or

right-adjusted in the field otherwise.
d. each formatted column is separated from its neighbours by a single blank

column.
e. the exponent values in scaled formats are left-adjusted to remove any

blanks.

Examples
C←22 ¯0.000000123 2.34 ¯212 123456 6.00002 0

⍴C←⍕2 2 3⍴C
2 2 29

C
22 ¯1.2300E¯7 2.3400E0

¯212 1.2346E5 6.0000E0

0 2.2000E1 ¯1.2300E¯7
2.34 ¯2.1200E2 1.2346E5

Chapter 1: Primitive Functions 54

If Y is non-simple, and all items of Y at any depth are scalars or vectors, then R is a
vector.

Examples
B←⍕A←'ABC' 100 (1 2 (3 4 5)) 10

⍴A
4

≡A
¯3

⍴B
26

≡B
1

A
ABC 100 1 2 3 4 5 10

B
ABC 100 1 2 3 4 5 10

By replacing spaces with ^, it is clearer to see how the result of ⍕ is formed:

^ABC^^100^^1^2^^3^4^5^^^10

Chapter 1: Primitive Functions 55

If Y is non-simple, and all items of Y at any depth are not scalars, then R is a matrix.

Example
D←⍕C←1 'AB' (2 2⍴1+⍳4) (2 2 3⍴'CDEFGHIJKLMN')

C
1 AB 2 3 CDE

4 5 FGH

IJK
LMN

⍴C
4

≡C
¯2

D
1 AB 2 3 CDE

4 5 FGH

IJK
LMN

⍴D
5 16

≡D
1

By replacing spaces with ^, it is clearer to see how the result of ⍕ is formed:

1^^AB^^2^3^^CDE^
^^^^^^^4^5^^FGH^
^^^^^^^^^^^^^^^^
^^^^^^^^^^^^IJK^
^^^^^^^^^^^^LMN^

⎕PP is an implicit argument of Monadic Format.

Chapter 1: Primitive Functions 56

Format (Dyadic) R←X⍕Y

Ymust be a simple real (non-complex) numeric array. Xmust be a simple integer
scalar or vector. R is a character array displaying the array Y according to the
specification X. R has rank 1⌈⍴⍴Y and ¯1↓⍴R is ¯1↓⍴Y. If any element of Y is
complex, dyadic ⍕ reports a DOMAIN ERROR.

Conformability requires that if X has more than two elements, then ⍴Xmust be
2×¯1↑⍴Y. If X contains one element, it is extended to (2×¯1↑⍴Y)⍴0,X. If X
contains 2 elements, it is extended to (2×¯1↑⍴Y)⍴X.

X specifies two numbers (possibly after extension) for each column in Y. For this
purpose, scalar Y is treated as a one-element vector. Each pair of numbers in X
identifies a format width (W) and a format precision (P).

If P is 0, the column is to be formatted as integers.

Examples
5 0 ⍕ 2 3⍴⍳6

1 2 3
4 5 6

4 0⍕1.1 2 ¯4 2.547
1 2 ¯4 3

If P is positive, the format is floating point with P significant digits to be displayed
after the decimal point.

Example
4 1⍕1.1 2 ¯4 2.547

1.1 2.0¯4.0 2.5

If P is negative, scaled format is used with |P digits in the mantissa.

Example
7 ¯3⍕5 15 155 1555

5.00E0 1.50E1 1.55E2 1.56E3

If W is 0 or absent, then the width of the corresponding columns of R are determined
by the maximumwidth required by any element in the corresponding columns of Y,
plus one separating space.

Chapter 1: Primitive Functions 57

Example
3⍕2 3⍴10 15.2346 ¯17.1 2 3 4

 10.000 15.235 ¯17.100
 2.000 3.000 4.000

If a formatted element exceeds its specified field width when W>0, the field width for
that element is filled with asterisks.

Example
3 0 6 2 ⍕ 3 2⍴10.1 15 1001 22.357 101 1110.1

10 15.00
*** 22.36
101******

If the format precision exceeds the internal precision, low order digits are replaced by
the symbol '_'.

Example
26⍕2*100

1267650600228229_______________._________________________
_

⍴26⍕2*100
59

0 20⍕÷3
0.3333333333333333____

0 ¯20⍕÷3
3.333333333333333____E¯1

The shape of R is the same as the shape of Y except that the last dimension of R is the
sum of the field widths specified in X or deduced by the function. If Y is a scalar, the
shape of R is the field width.

⍴5 2 ⍕ 2 3 4⍴⍳24
2 3 20

Chapter 1: Primitive Functions 58

Grade Down (Monadic) R←⍒Y

Ymay be any array of rank greater than 0 but may not contain namespaces. R is an
integer vector being the permutation of ⍳1↑⍴Y that places the sub-arrays along the
first axis in descending order. For the rules for comparing items of Y with one
another, see Grade Up (Monadic) on page 62.

⎕IO is an implicit argument of Grade Down.

Examples
⍒22.5 1 15 3 ¯4

1 3 4 2 5

M
2 3 5
1 4 7

2 3 4
5 2 4

2 3 5
1 2 6

⍒M
1 3 2

Note that character arrays sort differently in the Unicode and Classic Editions.

M
Goldilocks
porridge
Porridge
3 bears

Unicode Edition Classic Edition

⍒M
2 3 1 4

⍒M
3 1 4 2

M[⍒M;]
porridge
Porridge
Goldilocks
3 bears

M[⍒M;]
Porridge
Goldilocks
3 bears
porridge

Chapter 1: Primitive Functions 59

⍴pb
6 3

pb
┌────────┬─────┬───┐
│Rivers │Jason│554│
├────────┼─────┼───┤
│Daintree│John │532│
├────────┼─────┼───┤
│Rivers │Jason│543│
├────────┼─────┼───┤
│Foad │Jay │558│
├────────┼─────┼───┤
│Scholes │John │547│
├────────┼─────┼───┤
│Scholes │John │535│
└────────┴─────┴───┘

⍒pb
5 6 1 3 4 2

Grade Down (Dyadic) R←X⍒Y

Ymust be a simple character array of rank greater than 0. Xmust be a simple
character array of rank 1 or greater. R is a simple integer vector of shape 1↑⍴Y
containing the permutation of ⍳1↑⍴Y that places the sub-arrays of Y along the first
axis in descending order according to the collation sequence X. The indices of any
set of identical sub-arrays in Y occur in R in ascending order.

If X is a vector, the following identity holds:

X⍒Y ←→ ⍒X⍳Y

A left argument of rank greater than 1 allows successive resolution of duplicate
orderings in the following way.

Starting with the last axis:

l The characters in the right argument are located along the current axis of the
left argument. The position of the first occurrence gives the ordering value
of the character.

l If a character occurs more than once in the left argument its lowest position
along the current axis is used.

l If a character of the right argument does not occur in the left argument, the
ordering value is one more than the maximum index of the current axis - as
with dyadic iota.

Chapter 1: Primitive Functions 60

The process is repeated using each axis in turn, from the last to the first, resolving
duplicates until either no duplicates result or all axes have been exhausted.

For example, if index origin is 1:

Left argument: Right argument:
abc
ABA

ab
ac
Aa
Ac

Along last axis:

Character: Value: Ordering:
ab
ac
Aa
Ac

1 2
1 3
1 1
1 3

3
=1 <-duplicate ordering with
4
=1 <-respect to last axis.

Duplicates exist, so resolve these with respect to the first axis:

Character: Value: Ordering:
ac
Ac

1 1
2 1

2
1

So the final row ordering is:

ab 3
ac 2
Aa 4
Ac 1

That is, the order of rows is 4 2 1 3 which corresponds to a descending row sort of:

Ac 1
ac 2
ab 3
Aa 4

Chapter 1: Primitive Functions 61

Examples
⍴S1

2 27
S1

ABCDEFGHIJKLMNOPQRSTUVWXYZ
abcdefghijklmnopqrstuvwxyz

S2
ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz

S3
AaBbCcDdEeFfGgHhIiJjKkLlMmNnOoPpQqRrSsTtUuVvWwXxYyZz

S4
ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz
abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ

The following results are tabulated for comparison:

X X[S1⍒X;] X[S2⍒X;] X[S3⍒X;] X[S4⍒X;]
FIRsT TAPE rAT TAPE TAPE
TAP TAP fIRST TAP TAP
RATE RATE TAPE rAT RATE
FiRST rAT TAP RATE rAT
FIRST RAT RATE RAT RAT
rAT MAT RAT MAT MAT
fIRST fIRST MAT fIRST FIRsT
TAPE FiRST FiRST FiRST FiRST
MAT FIRsT FIRsT FIRsT FIRST
RAT FIRST FIRST FIRST fIRST

⎕IO is an implicit argument of Grade Down.

Chapter 1: Primitive Functions 62

Grade Up (Monadic) R←⍋Y

Ymay be any array of rank greater than 0 but may not contain namespaces. R is an
integer vector being the permutation of ⍳1↑⍴Y that places the sub-arrays along the
first axis in ascending order. The rules for comparing items of Y with one another are
as follows:

Rules for comparing simple scalars
l Numeric comparisons are exact, as if ⎕CT←⎕DCT←0 and ⎕FR←1287
l Two real numbers are compared numerically, thus 1.2 precedes 3.
l In the Unicode Edition two characters are compared numerically according
to their position in the Unicode table. Thus 'a' (⎕UCS 97) precedes
'b' (⎕UCS 98). In the Classic Edition characters are compared according
to their index in ⎕AV.

l Complex numbers are ordered by first comparing their real parts. If these are
equal, the order is determined by comparing their imaginary parts.
Thus 1J¯2 precedes 1 which precedes 1J2.

l ⎕NULL (which represents a null item obtained from an external source)
precedes all numbers, and all numbers precede all characters.
Thus ⎕NULL precedes 100, and 100 precedes 'A'.

Rules for comparing non-scalar arrays
l Arrays are compared item by item in ravel order.
l For arrays of equal shape, the order is determined by the first pair of items
which differ, thus (1949 4 29) precedes (1949 4 30). Similarly
('April' 29) precedes ('April' 30).

l Arrays with the same rank but different shape are ordered as if the shorter
array were padded with items that precede all other types of item (negative
infinity) including ⎕NULL. Thus 'car' precedes 'carpet'
and (1949 4) precedes (1949 4 30). An alternative model is to say
that shorter arrays precede longer ones that begin the same way. For
character vectors this is described as Lexicographical ordering, which is the
order that words appear in a dictionary.

l Arrays with differing rank are ordered by first extending the shape of the
lower-ranked array with 1s at the beginning, and then comparing the
resultant equal-rank arrays as described above. So, to compare a vector (rank
1) with a matrix (rank 2), the vector is reshaped into a 1-row matrix.

Chapter 1: Primitive Functions 63

l Empty arrays are compared first by type alone, so an empty numeric array
precedes an empty character array, regardless of rank or shape.
Thus ((0 3 2)⍴0) precedes ''. If the empty arrays are of the same type,
they are sorted in order of their shape vector, working right to left.
So ((0 5 2)⍴99) precedes ((0 3 4)⍴0) and
((0 3 4)⍴'') precedes ((1 0 5 4)⍴'').

⎕IO is an implicit argument of Grade Up

Examples
⍋22.5 1 15 3 ¯4

5 2 4 3 1

M
2 3 5
1 4 7

2 3 4
5 2 4

2 3 5
1 2 6

⍋M
2 3 1

Note that character arrays sort differently in the Unicode and Classic Editions.

M
Goldilocks
porridge
Porridge
3 bears

Unicode Edition Classic Edition

⍋M
4 1 3 2

⍋M
2 4 1 3

M[⍋M;]
3 bears
Goldilocks
Porridge
porridge

M[⍋M;]
porridge
3 bears
Goldilocks
Porridge

Chapter 1: Primitive Functions 64

⍴pb
6 3

pb
┌────────┬─────┬───┐
│Rivers │Jason│554│
├────────┼─────┼───┤
│Daintree│John │532│
├────────┼─────┼───┤
│Rivers │Jason│543│
├────────┼─────┼───┤
│Foad │Jay │558│
├────────┼─────┼───┤
│Scholes │John │547│
├────────┼─────┼───┤
│Scholes │John │535│
└────────┴─────┴───┘

⍋pb
2 4 3 1 6 5

Chapter 1: Primitive Functions 65

Grade Up (Dyadic) R←X⍋Y

Ymust be a simple character array of rank greater than 0. Xmust be a simple
character array of rank 1 or greater. R is a simple integer vector being the
permutation of ⍳1↑⍴Y that places the sub-arrays of Y along the first axis in ascending
order according to the collation sequence X.

If X is a vector, the following identity holds:

X⍋Y ←→ ⍋X⍳Y

If X is a higher-rank array, each axis of X represents a grading attribute in increasing
order of importance (the first axis is the least significant and the last axis is the most
significant). If a character is repeated in X, it is treated as though it were located at
the position in the array determined by the lowest index in each axis for all
occurrences of the character. The character has the same weighting as the character
located at the derived position in X.

Examples
(2 2⍴'ABBA') ⍋ 'AB'[?5 2⍴2] ⍝ A and B are

equivalent
1 2 3 4 5

]display A←2 14⍴' abcdegiklmnrt ABCDEGIKLMNRT'
┌→─────────────┐
↓ abcdegiklmnrt│
│ ABCDEGIKLMNRT│
└──────────────┘

V←'Ab' 'AB' 'aba' 'ABA' 'abaca' 'abecedarian'
V,←'Abelian' 'black' 'blackball' 'black belt'
V,←'blacking' 'Black Mass'

]display M←↑V
┌→──────────┐
↓Ab │
│AB │
│aba │
│ABA │
│abaca │
│abecedarian│
│Abelian │
│black │
│blackball │
│black belt │
│blacking │
│Black Mass │
└───────────┘

Chapter 1: Primitive Functions 66

]display M (M[(,A)⍋M;]) (M[(,⍉A)⍋M;]) (M[A⍋M;])
┌→──┐
│ ┌→──────────┐ ┌→──────────┐ ┌→──────────┐ ┌→──────────┐ │
│ ↓Ab │ ↓aba │ ↓aba │ ↓Ab │ │
│ │AB │ │abaca │ │abaca │ │AB │ │
│ │aba │ │abecedarian│ │abecedarian│ │aba │ │
│ │ABA │ │black │ │Ab │ │ABA │ │
│ │abaca │ │black belt │ │Abelian │ │abaca │ │
│ │abecedarian│ │blackball │ │AB │ │abecedarian│ │
│ │Abelian │ │blacking │ │ABA │ │Abelian │ │
│ │black │ │Ab │ │black │ │black │ │
│ │blackball │ │Abelian │ │black belt │ │black belt │ │
│ │black belt │ │AB │ │blackball │ │Black Mass │ │
│ │blacking │ │ABA │ │blacking │ │blackball │ │
│ │Black Mass │ │Black Mass │ │Black Mass │ │blacking │ │
│ └───────────┘ └───────────┘ └───────────┘ └───────────┘ │
└∊──┘'

Greater R←X>Y

Ymust be numeric. Xmust be numeric. R is Boolean. R is 1 if X is greater than Y
and X=Y is 0. Otherwise R is 0.

⎕CT and ⎕DCT are implicit arguments of Greater.

Examples
1 2 3 4 5 > 2

0 0 1 1 1

⎕CT←1E¯10

1 1.00000000001 1.000000001 > 1
0 0 1

Chapter 1: Primitive Functions 67

Greater Or Equal R←X≥Y

Ymust be numeric. Xmust be numeric. R is Boolean. R is 1 if X is greater than Y or
X=Y. Otherwise R is 0.

⎕CT and ⎕DCT are implicit arguments of Greater Or Equal.

Examples
1 2 3 4 5 ≥ 3

0 0 1 1 1

⎕CT←1E¯10

1≥1
1

1≥1.00000000001
1

1≥1.00000001
0

Chapter 1: Primitive Functions 68

Index R←{X}⌷Y

Dyadic case
Xmust be a scalar or vector of depth ≤2 of integers each ≥⎕IO. Ymay be any array.
In general, the result R is similar to that obtained by square-bracket indexing in that:

(I J ... ⌷ Y) ≡ Y[I;J;...]

The length of left argument Xmust be less than or equal to the rank of right argument
Y. Any missing trailing items of X default to the index vector of the corresponding
axis of Y.

Note that in common with square-bracket indexing, items of the left argument Xmay
be of any rank and that the shape of the result is the concatenation of the shapes of
the items of the left argument:

(⍴X⌷Y) ≡ ↑,/⍴¨X

Index is sometimes referred to as squad indexing.

Note that index may be used with selective specification.

⎕IO is an implicit argument of index.

Chapter 1: Primitive Functions 69

Examples
⎕IO←1

VEC←111 222 333 444
3⌷VEC

333
(⊂4 3)⌷VEC

444 333
(⊂2 3⍴3 1 4 1 2 3)⌷VEC

333 111 444
111 222 333

⎕←MAT←10⊥¨⍳3 4
11 12 13 14
21 22 23 24
31 32 33 34

2 1⌷MAT
21

2⌷MAT
21 22 23 24

3(2 1)⌷MAT
32 31

(2 3)1⌷MAT
21 31

(2 3)(,1)⌷MAT
21
31

⍴(2 1⍴1)(3 4⍴2)⌷MAT
2 1 3 4

⍴⍬ ⍬⌷MAT
0 0

(3(2 1)⌷MAT)←0 ⋄ MAT ⍝ Selective assignment.
11 12 13 14
21 22 23 24
0 0 33 34

Chapter 1: Primitive Functions 70

Monadic case
If Y is an array, Y is returned.

If Y is a ref to an instance of a Class with a Default property, all elements of the
Default property are returned. For example, if Item is the default property of
MyClass, and imc is an Instance of MyClass, then by definition:

imc.Item≡⌷imc

NONCE ERROR is reported if the Default Property is Keyed, because in this case APL
has no way to determine the list of all the elements.

Note that the values of the index set are obtained or assigned by calls to the
corresponding PropertyGet and PropertySet functions. Furthermore, if there is a
sequence of primitive functions to the left of the Index function, that operate on the
index set itself (functions such as dyadic ⍴,↑,↓,⊃) as opposed to functions that
operate on the values of the index set (functions such as +,⌈,⌊,⍴¨), calls to the
PropertyGet and PropertySet functions are deferred until the required index set has
been completely determined. The full set of functions that cause deferral of calls to
the PropertyGet and PropertySet functions is the same as the set of functions that
applies to selective specification.

If for example, CompFile is an Instance of a Class with a Default Numbered
Property, the expression:

1↑⌽⌷CompFile

would only call the PropertyGet function (for CompFile) once, to get the value of
the last element.

Note that similarly, the expression

10000⍴⌷CompFile

would call the PropertyGet function 10000 times, on repeated indices if CompFile
has less than 10000 elements. The deferral of access function calls is intended to be
an optimisation, but can have the opposite effect. You can avoid unnecessary
repetitive calls by assigning the result of ⌷ to a temporary variable.

Chapter 1: Primitive Functions 71

Index with Axes R←{X}⌷[K]Y

Xmust be a scalar or vector of depth ≤2, of integers each ≥⎕IO. Ymay be any array.
K is a simple scalar or vector specifying axes of Y. The length of Kmust be the same
as the length of X:

(⍴,X) ≡ ⍴,K

In general, the result R is similar to that obtained by square-bracket indexing with
elided subscripts. Items of K distribute items of X along the axes of Y. For example:

I J ⌷[1 3] Y ←→ Y[I;;J]

Note that index with axis may be used with selective specification. ⎕IO is an
implicit argument of index with axis.

Examples
⎕IO←1

⎕←CUBE←10⊥¨⍳2 3 4
111 112 113 114
121 122 123 124
131 132 133 134

211 212 213 214
221 222 223 224
231 232 233 234

2⌷[1]CUBE
211 212 213 214
221 222 223 224
231 232 233 234

2⌷[3]CUBE
112 122 132
212 222 232

CUBE[;;2] ≡ 2⌷[3]CUBE
1

(1 3)4⌷[2 3]CUBE
114 134
214 234

CUBE[;1 3;4] ≡ (1 3)4⌷[2 3]CUBE
1

Chapter 1: Primitive Functions 72

(2(1 3)⌷[1 3]CUBE)←0 ⋄ CUBE ⍝ Selective assignment.
111 112 113 114
121 122 123 124
131 132 133 134

0 212 0 214
0 222 0 224
0 232 0 234

Index Generator R←⍳Y

Ymust be a simple scalar or vector array of non-negative numbers. R is a numeric
array composed of the set of all possible coordinates of an array of shape Y. The shape
of R is Y and each element of R occurs in its self-indexing position in R. In particular,
the following identity holds:

⍳Y ←→ (⍳Y)[⍳Y]

⎕IO is an implicit argument of Index Generator. This function is also known as
Interval.

Examples
⎕IO

1
⍴⍳0

0
⍳5

1 2 3 4 5

⍳2 3
1 1 1 2 1 3
2 1 2 2 2 3

⊢A←2 4⍴'MAINEXIT'
MAIN
EXIT

A[⍳⍴A]
MAIN
EXIT

Chapter 1: Primitive Functions 73

⎕IO←0
⍳5

0 1 2 3 4

⍳2 3
0 0 0 1 0 2
1 0 1 1 1 2

A[⍳⍴A]
MAIN
EXIT

Index Of R←X⍳Y

Ymay be any array. Xmay be any array of rank 1 or more.

In general, the function locates the first occurrence of sub-arrays in Y which match
major cells of X, where a major cell is a sub-array on the leading dimension of X with
shape 1↓⍴X. The shape of the result R is (1-⍴⍴X)↓⍴Y.

If a sub-array of Y cannot be found in X, then the corresponding element of R will be
⎕IO+⊃⍴X.

In particular, if X is a vector, the result R is a simple integer array with the same shape
as Y identifying where elements of Y are first found in X. If an element of Y cannot be
found in X, then the corresponding element of R will be ⎕IO+⊃⍴X.

Elements of X and Y are considered the same if X≡Y returns 1 for those elements.

⎕IO, ⎕CT and ⎕DCT are implicit arguments of Index Of.

Examples
⎕IO←1

2 4 3 1 4⍳1 2 3 4 5
4 1 3 2 6

'CAT' 'DOG' 'MOUSE'⍳'DOG' 'BIRD'
2 4

X←3 4⍴⍳12

X
1 2 3 4
5 6 7 8
9 10 11 12

X⍳1 2 3 4
1

Chapter 1: Primitive Functions 74

Y←2 4⍴1 2 3 4 9 10 11 12
Y

1 2 3 4
9 10 11 12

X⍳Y
1 3

X⍳2 3 4 1
4

X1←10 100 1000∘.+X
X1

11 12 13 14
15 16 17 18
19 20 21 22

101 102 103 104
105 106 107 108
109 110 111 112

1001 1002 1003 1004
1005 1006 1007 1008
1009 1010 1011 1012

X1⍳100 1000∘.+X
2 3

x
United Kingdom
Germany
France
Italy
United States
Canada
Japan
Canada
France

y
United Kingdom
Germany
France
Italy
USA

Canada
Japan
China
India
Deutschland

Chapter 1: Primitive Functions 75

⍴x
9 14

⍴y
2 5 14

x⍳y
1 2 3 4 10
6 7 10 10 10

x⍳x
1 2 3 4 5 6 7 6 3

Note that the expression y⍳x signals a LENGTH ERROR because it looks for major
cells in the left argument, whose shape is 5 14 (that is 1↓⍴y), which is not the same
as the trailing shape of x.

y⍳x
LENGTH ERROR

y⍳x
∧

For performance information, see Programming Reference Guide: Search Functions
and Hash Tables.

Chapter 1: Primitive Functions 76

Indexing R←X[Y]

Xmay be any array. Ymust be a valid index specification. R is an array composed of
elements indexed from X and the shape of X is determined by the index specification.

This form of Indexing, using brackets, does not follow the normal syntax of a dyadic
function. For an alternative method of indexing, see Index on page 68.

⎕IO is an implicit argument of Indexing.

Three forms of indexing are permitted. The form used is determined by context.

Simple Indexing
For vector X, Y is a simple integer array composed of items from the set ⍳⍴X.

R consists of elements selected according to index positions in Y. R has the same
shape as Y.

Examples
A←10 20 30 40 50

A[2 3⍴1 1 1 2 2 2]
10 10 10
20 20 20

A[3]
30

'ONE' 'TWO' 'THREE'[2]
TWO

For matrix X, Y is composed of two simple integer arrays separated by the semicolon
character (;). The arrays select indices from the rows and columns of X respectively.

Examples
+M←2 4⍴10×⍳8

10 20 30 40
50 60 70 80

M[2;3]
70

Chapter 1: Primitive Functions 77

For higher-rank array X, Y is composed of a simple integer array for each axis of X
with adjacent arrays separated by a single semicolon character (;). The arrays select
indices from the respective axes of X, taken in row-major order.

Examples
⊢A←2 3 4⍴10×⍳24

10 20 30 40
50 60 70 80
90 100 110 120

130 140 150 160
170 180 190 200
210 220 230 240

A[1;1;1]
10

A[2;3 2;4 1]
240 210
200 170

If an indexing array is omitted for the Kth axis, the index vector ⍳(⍴X)[K] is
assumed for that axis.

Examples
A[;2;]

50 60 70 80
170 180 190 200

M
10 20 30 40
50 60 70 80

M[;]
10 20 30 40
50 60 70 80

M[1;]
10 20 30 40

M[;1]
10 50

Chapter 1: Primitive Functions 78

Choose Indexing
The index specification Y is a non-simple array. Each item identifies a single element
of X by a set of indices with one element per axis of X in row-major order.

Examples
M

10 20 30 40
50 60 70 80

M[⊂1 2]
20

M[2 2⍴⊂2 4]
80 80
80 80

M[(2 1)(1 2)]
50 20

A scalar may be indexed by the enclosed empty vector:

S←'Z'
S[3⍴⊂⍳0]

ZZZ

Simple and Choose indexing are indistinguishable for vector X:

V←10 20 30 40

V[⊂2]
20

⊂2
2

V[2]
20

Chapter 1: Primitive Functions 79

Reach Indexing
The index specification Y is a non-simple integer array, each of whose items reach
down to a nested element of X. The items of an item of Y are simple vectors (or
scalars) forming sets of indices that index arrays at successive levels of X starting at
the top-most level. A set of indices has one element per axis at the respective level of
nesting of X in row-major order.

Examples
G←('ABC' 1)('DEF' 2)('GHI' 3)('JKL' 4)
G←2 3⍴G,('MNO' 5)('PQR' 6)
G

ABC 1 DEF 2 GHI 3
JKL 4 MNO 5 PQR 6

G[((1 2)1)((2 3)2)]
DEF 6

G[2 2⍴⊂(2 2)2]
5 5
5 5

G[⊂⊂1 1]
ABC 1

G[⊂1 1]
ABC 1

V←,G

V[⊂⊂1]
ABC 1

V[⊂1]
ABC 1

V[1]
ABC 1

Chapter 1: Primitive Functions 80

Intersection R←X∩Y

Ymust be a scalar or vector. Xmust be a scalar or vector. A scalar X or Y is treated as
a one-element vector. R is a vector composed of items occurring in both X and Y in
the order of occurrence in X. If an item is repeated in X and also occurs in Y, the item
is also repeated in R.

Items in X and Y are considered the same if X≡Y returns 1 for those items.

⎕CT and ⎕DCT are implicit arguments of Intersection.

Examples
'ABRA'∩'CAR'

ARA

1 'PLUS' 2 ∩ ⍳5
1 2

For performance information, see Programming Reference Guide: Search Functions
and Hash Tables.

Chapter 1: Primitive Functions 81

Interval Index R←X⍸Y

Classic Edition: the symbol ⍸ (Iota Underbar) is not available in Classic Edition, and
Interval Index is instead represented by ⎕U2378.

X is an ordered non-scalar array that represents a set of intervals or ranges.

Note that the ith interval starts at X[i], then includes all subsequent values up to
but not including X[i+1].

For example, if X is (1 3 5) it defines 4 intervals numbered 0 to 3 as follows.

0 less than 1 <1

1 between 1 and 3 (≥1)∧(<3)

2 between 3 and 5 (≥3)∧(<5)

3 greater than or equal to 5 ≥5

If X is 'AEIOU' it defines 6 intervals numbered 0 to 5 as follows:

0 before A ⎕UCS[0,⍳64]

1 between A and E ABCD

2 between E and I EFGH

3 between I and O IJKLMN

4 between O and U OPQREST

5 U and after UVWXYZ...

Y is an array of the same type (numeric or character) as X.

The result R is an integer array that identifies into which interval the corresponding
value in Y falls.

Like dyadic ⍳ (see Index Of on page 73), Interval Index works with major cells. For a
vector these are its elements; for a matrix its rows, and so forth.

X and Y are compared using the same logic as monadic ⍋ (see Grade Up (Monadic)
on page 62) which is independent of ⎕CT and ⎕DCT.

⎕IO is an implicit arguments of Interval Index. In all the following examples, ⎕IO is
1.

Chapter 1: Primitive Functions 82

Examples
10 20 30⍸11 1 31 21

1 0 3 2

In the above example:

l 11 is between X[1] and X[2] so the answer is 1.
l 1 is less than X[1] so the answer is 0
l 31 is greater than X[⍴X] so the answer is 3
l 21 is between X[2] and X[3] so the answer is 2.

'AEIOU' ⍸ 'DYALOG'
1 5 1 3 4 2

And in the alphabetic example above:

l "D" is between X[1] and X[2], so the answer is 1
l "Y" is after X[⍴X] so the answer is 5
l "A" is between X[1] and X[2], so the answer is 1
l as so on ...

Example (Classification)
Commercially, olive oil is graded as follows:

l if its acidity is less than 0.8%, as "Extra Virgin"
l if its acidity is less than 2%, as "Virgin"
l if its acidity is less than 3.3%, as "Ordinary"
l otherwise, as "Lampante"

grades←'Extra Virgin' 'Virgin' 'Ordinary' 'Lampante'
acidity←0.8 2 3.3

samples←1.3 1.9 0.7 4 .6 3.2
acidity⍸samples

1 1 0 3 0 2
samples,⍪grades[1+acidity⍸samples]

┌───┬────────────┐
│1.3│Virgin │
├───┼────────────┤
│1.9│Virgin │
├───┼────────────┤
│0.7│Extra Virgin│
├───┼────────────┤
│4 │Lampante │
├───┼────────────┤
│0.6│Extra Virgin│
├───┼────────────┤
│3.2│Ordinary │
└───┴────────────┘

Chapter 1: Primitive Functions 83

Example (Data Consolidation by Interval)
x represents some data sampled in chronological order at timestamps t.

⍴x
200000

x
3984300 2020650 819000 1677100 3959200 2177250 3431800
...

⍴t
200000 3

(10↑t) (¯10↑t)
┌─────┬────────┐
│0 0 0│23 59 54│
│0 0 0│23 59 55│
│0 0 0│23 59 56│
│0 0 0│23 59 56│
│0 0 0│23 59 58│
│0 0 2│23 59 58│
│0 0 3│23 59 59│
│0 0 3│23 59 59│
│0 0 4│23 59 59│
│0 0 5│23 59 59│
└─────┴────────┘

u represents timestamps for 5-minute intervals:

⍴u
288 3

(10↑u) (¯10↑u)
┌──────┬───────┐
│0 0 0│23 10 0│
│0 5 0│23 15 0│
│0 10 0│23 20 0│
│0 15 0│23 25 0│
│0 20 0│23 30 0│
│0 25 0│23 35 0│
│0 30 0│23 40 0│
│0 35 0│23 45 0│
│0 40 0│23 50 0│
│0 45 0│23 55 0│
└──────┴───────┘

Chapter 1: Primitive Functions 84

Therefore, the expression (u⍸t){+/⍵}⌸x summarises x in 5-minute intervals.

u ⍸ t
1 1 1 1 1 1 1 1 1 1 ... 288 288 288 288 288 288

(u⍸t) {+/⍵}⌸ x
1339083050 1365108650 1541944750 1393476000 1454347100
...

(u⍸t) {(⍺⌷u),+/⍵}⌸ x
0 0 0 1339083050
0 5 0 1365108650
0 10 0 1541944750
0 15 0 1393476000

...
23 45 0 1388823150
23 50 0 1453472350
23 55 0 1492078850

Chapter 1: Primitive Functions 85

Higher-Rank Left Argument
If X is a higher rank array, the function compares sub-arrays in Y with the major cells
of X, where a major cell is a sub-array on the leading dimension of X with shape
1↓⍴X. In this case, the shape of the result R is (1-⍴⍴X)↓⍴Y.

Example
x ← ↑ 'Fi' 'Jay' 'John' 'Morten' 'Roger'
x

Fi
Jay
John
Morten
Roger

⍴x
5 6

y ← x ⍪ ↑ 'JD' 'Jd' 'Geoff' 'Alpha' 'Omega' 'Zeus
'

y
Fi
Jay
John
Morten
Roger
JD
Jd
Geoff
Alpha
Omega
Zeus

x ⍸ y
1 2 3 4 5 1 2 1 0 4 5

y ,⍪ x⍸y
Fi 1
Jay 2
John 3
Morten 4
Roger 5
JD 1
Jd 2
Geoff 1
Alpha 0
Omega 4
Zeus 5

Chapter 1: Primitive Functions 86

Further Example
⍴x

5 6
⍴y

3 3 6
x

Fi
Jay
John
Morten
Roger

y
Fi
Jay
John

Morten
Roger
JD

Jd
Geoff
Alpha

x⍸y
1 2 3
4 5 1
2 1 0

Chapter 1: Primitive Functions 87

Nested Array Example
A card-player likes to sort a hand into suits spades, hearts, diamond, clubs
(fortunately alphabetic) and high-to-low within each suit.

suits←'Clubs' 'Diamonds' 'Hearts' 'Spades'
pack←,(⊂¨suits)∘.,1↓14 ⍝ 11=Jack ... 14=Ace
hand←↑(,pack)[7?52]
hand←hand[⍒hand;]
hand

┌────────┬──┐
│Spades │12│
├────────┼──┤
│Hearts │12│
├────────┼──┤
│Hearts │7 │
├────────┼──┤
│Hearts │2 │
├────────┼──┤
│Diamonds│11│
├────────┼──┤
│Diamonds│9 │
├────────┼──┤
│Clubs │8 │
└────────┴──┘

Another card, the 10 of diamonds is dealt. Where must it go in the hand ?

(⊖hand)⍸'Diamonds' 10 ⍝ left arg must be sorted up
2

(¯2↓hand)⍪'Diamonds' 10⍪¯2↑hand
┌────────┬──┐
│Spades │12│
├────────┼──┤
│Hearts │12│
├────────┼──┤
│Hearts │7 │
├────────┼──┤
│Hearts │2 │
├────────┼──┤
│Diamonds│11│
├────────┼──┤
│Diamonds│10│
├────────┼──┤
│Diamonds│9 │
├────────┼──┤
│Clubs │8 │
└────────┴──┘

Note that if (∧/Y∊X) and X is sorted and ⎕CT=0 ,then x⍸y is the same as x⍳y.

Chapter 1: Primitive Functions 88

Left R←X⊣Y

X and Ymay be any arrays.

The result R is the left argument X.

Example
42⊣'abc' 1 2 3

42

Note that when ⊣ is applied using reduction, the derived function selects the first
sub-array of the array along the specified dimension. This is implemented as an
idiom.

Examples
⊣/1 2 3

1

mat←↑'scent' 'canoe' 'arson' 'rouse' 'fleet'
⊣⌿mat ⍝ first row

scent
⊣/mat ⍝ first column

scarf

⊣/[2]2 3 4⍴⍳24 ⍝ first row from each plane
1 2 3 4

13 14 15 16

Similarly, with expansion:

⊣\mat
sssss
ccccc
aaaaa
rrrrr
fffff

⊣⍀mat
scent
scent
scent
scent
scent

Chapter 1: Primitive Functions 89

Less R←X<Y

Ymay be any numeric array. Xmay be any numeric array. R is Boolean. R is 1 if X
is less than Y and X=Y is 0. Otherwise R is 0.

⎕CT and ⎕DCT are implicit arguments of Less.

Examples
(2 4) (6 8 10) < 6

1 1 0 0 0

⎕CT←1E¯10

1 0.99999999999 0.9999999999<1
0 0 1

Less Or Equal R←X≤Y

Ymay be any numeric array. Xmay be any numeric array. R is Boolean. R is 1 if X
is less than Y or X=Y. Otherwise R is 0.

⎕CT and ⎕DCT are implicit arguments of Less Or Equal.

Examples
2 4 6 8 10 ≤ 6

1 1 1 0 0

⎕CT←1E¯10

1 1.00000000001 1.00000001 ≤ 1
1 1 0

Chapter 1: Primitive Functions 90

Logarithm R←X⍟Y

Ymust be a positive numeric array. Xmust be a positive numeric array. X cannot be 1
unless Y is also 1. R is the base X logarithm of Y.

Note that Logarithm (dyadic ⍟) is defined in terms of Natural Logarithm (monadic ⍟)
as:

X⍟Y←→(⍟Y)÷⍟X

Examples
10⍟100 2

2 0.3010299957

2 10⍟0J1 1J2
0J2.266180071 0.3494850022J0.4808285788

1 ⍟ 1
1

2 ⍟ 1
0

Magnitude R←|Y

Ymay be any numeric array. R is numeric composed of the absolute (unsigned)
values of Y.

Note that the magnitude of a complex number is defined to be

Examples
|2 ¯3.4 0 ¯2.7

2 3.4 0 2.7

|3j4
5

⎕IO is an implicit argument of magnitude.

Chapter 1: Primitive Functions 91

Match R←X≡Y

Ymay be any array. Xmay be any array. R is a simple Boolean scalar. If X is
identical to Y, then R is 1. Otherwise R is 0.

Non-empty arrays are identical if they have the same structure and the same values in
all corresponding locations. Empty arrays are identical if they have the same shape
and the same prototype (disclosed nested structure).

⎕CT and ⎕DCT are implicit arguments of Match.

Examples
⍬≡⍳0

1
''≡⍳0

0
A

THIS
WORD

A≡2 4⍴'THISWORD'
1

A≡⍳10
0

+B←A A
THIS THIS
WORD WORD

A≡⊃B
1

(0⍴A)≡0⍴B
0

' '=⊃0⍴B
1 1 1 1
1 1 1 1

' '=⊃0⍴A
1

Chapter 1: Primitive Functions 92

Matrix Divide R←X⌹Y

Ymust be a simple numeric array of rank 2 or less. Xmust be a simple numeric array
of rank 2 or less. Ymust be non-singular. A scalar argument is treated as a matrix
with one-element. If Y is a vector, it is treated as a single column matrix. If X is a
vector, it is treated as a single column matrix. The number of rows in X and Ymust
be the same. Ymust have at least the same number of rows as columns.

R is the result of matrix division of X by Y. That is, the matrix product Y+.×R is X.

R is determined such that (X-Y+.×R)*2 is minimised.

The shape of R is (1↓⍴Y),1↓⍴X.

Examples
⎕PP←5

B
3 1 4
1 5 9
2 6 5

35 89 79 ⌹ B
2.1444 8.2111 5.0889

A
35 36
89 88
79 75

A ⌹ B
2.1444 2.1889
8.2111 7.1222
5.0889 5.5778

Chapter 1: Primitive Functions 93

If there are more rows than columns in the right argument, the least squares solution
results. In the following example, the constants a and b which provide the best fit for
the set of equations represented by P = a + bQ are determined:

Q
1 1
1 2
1 3
1 4
1 5
1 6

P
12.03 8.78 6.01 3.75 ¯0.31 ¯2.79

P⌹Q
14.941 ¯2.9609

Example: linear regression on complex numbers
x←j⌿¯50+?2 13 4⍴100
y←(x+.×3 4 5 6) + j⌿0.0001×¯50+?2 13⍴100
⍴x

13 4
⍴y

13
y ⌹ x

3J0.000011066 4J¯0.000018499 5J0.000005745 6J0.000050328
⍝ i.e. y⌹x recovered the coefficients 3 4 5 6

Additional Information
x⌹y ←→ (⌹(⍉y)+.×y)+.×(⍉y)+.×x

(Use +⍉ instead of ⍉ for complex y.)

This equivalence, familiar to mathematicians and statisticians, explains

l the conformability requirements for ⌹
l how to compute the result for tall matrices from the better known square
matrix case

Chapter 1: Primitive Functions 94

Matrix Inverse R←⌹Y

Ymust be a simple array of rank 2 or less. Ymust be non-singular. If Y is a scalar, it
is treated as a one-element matrix. If Y is a vector, it is treated as a single-column
matrix. Ymust have at least the same number of rows as columns.

R is the inverse of Y if Y is a square matrix, or the left inverse of Y if Y is not a square
matrix. That is, R+.×Y is an identity matrix.

The shape of R is ⌽⍴Y.

Examples
M

2 ¯3
4 10

+A←⌹M
0.3125 0.09375

¯0.125 0.0625

Within calculation accuracy, A+.×M is the identity matrix.

A+.×M
1 0
0 1

j←{⍺←0 ⋄ ⍺+0J1×⍵}
x←j⌿¯50+?2 5 5⍴100
x

¯37J¯41 25J015 ¯5J¯09 3J020 ¯29J041
¯46J026 17J¯24 17J¯46 43J023 ¯12J¯18

1J013 33J025 ¯47J049 ¯45J¯14 2J¯26
17J048 ¯50J022 ¯12J025 ¯44J015 ¯9J¯43
18J013 8J038 43J¯23 34J¯07 2J026

⍴x
5 5

id←{∘.=⍨⍳⍵} ⍝ identity matrix of order ⍵
⌈/,| (id 1↑⍴x) - x+.×⌹x

3.66384E¯16

Chapter 1: Primitive Functions 95

Maximum R←X⌈Y

Ymay be any numeric array. Xmay be any numeric array. R is numeric. R is the
larger of the numbers X and Y.

Example
¯2.01 0.1 15.3 ⌈ ¯3.2 ¯1.1 22.7

¯2.01 0.1 22.7

Membership R←X∊Y

Ymay be any array. Xmay be any array. R is Boolean. An element of R is 1 if the
corresponding element of X can be found in Y.

An element of X is considered identical to an element in Y if X≡Y returns 1 for those
elements.

⎕CT and ⎕DCT are implicit arguments of Membership.

Examples
'THIS NOUN' ∊ 'THAT WORD'

1 1 0 0 1 0 1 0 0

'CAT' 'DOG' 'MOUSE' ∊ 'CAT' 'FOX' 'DOG' 'LLAMA'
1 1 0

For performance information, see Programming Reference Guide: Search Functions
and Hash Tables.

Minimum R←X⌊Y

Ymay be any numeric array. Xmay be any numeric array. R is numeric. R is the
smaller of X and Y.

Example
¯2.1 0.1 15.3 ⌊ ¯3.2 1 22

¯3.2 0.1 15.3

Minus R←X-Y

See Subtract on page 125.

Chapter 1: Primitive Functions 96

Mix (⎕ML) R←↑[K]Y or R←⊃[K]Y

The symbol chosen to represent Mix depends on the current Migration Level.

If ⎕ML<2, Mix is represented by the symbol: ↑.

If ⎕ML≥2, Mix is represented by the symbol: ⊃.

Ymay be any array whose items may be uniform in rank and shape, or differ in rank
and shape. If the items of Y are non-uniform, they are extended prior to the
application of the function as follows:

1. If the items of Y have different ranks, each item is extended in rank to that
of the greatest rank by padding with leading 1s.

2. If the items of Y have different shapes, each is padded with the
corresponding prototype to a shape that represents the greatest length along
each axis of all items in Y.

For the purposes of the following narrative, y represents the virtual item in Y with the
greatest rank and shape, with which all other items are extended to conform.

R is an array composed from the items of Y assembled into a higher-rank array with
one less level of nesting. ⍴R will be some permutation of (⍴Y),⍴y.

K is an optional axis specification whose value(s) indicate where in the result the
axes of y appear. There are three cases:

1. For all values of ⎕ML, K may be a scalar or 1-element vector whose value is
a fractional number indicating the two axes of Y between which new axes
are to be inserted for y. The shape of R is the shape of Y with the shape ⍴y
inserted between the ⌊Kth and the ⌈Kth axes of Y

2. If ⎕ML≥2, K may be a scalar or 1-element vector integer whose value
specifies the position of the first axis of y in the result. This case is identical
to the fractional case where K (in this case) is ⌈K (in the fractional case).

3. If ⎕ML≥2, K may be a vector, with the same length as ⍴y, each element of
which specifies the position in the result of the corresponding axis of the y.

If K is absent, the axes of y appear as the last axes of the result.

Chapter 1: Primitive Functions 97

Simple Vector Examples
In this example, the shape of Y is 3, and the shape of y is 2. So the shape of the result
will be a permutation of 2 and 3, i.e. in this simple example, either (2 3) or (3 2).

If K is omitted, the shape of the result is (⍴Y),⍴y.

↑(1 2)(3 4)(5 6)
1 2
3 4
5 6

If K is between 0 and 1, the shape of the result is (⍴y),⍴Y because (⍴y) is inserted
between the 0th and the 1st axis of the result, i.e. at the beginning.

↑[.5](1 2)(3 4)(5 6)
1 3 5
2 4 6

If K is between 1 and 2, the shape of the result is (⍴Y),⍴y because (⍴y) is inserted
between the 1st and 2nd axis of the result, i.e. at the end. This is the same as the case
when K is omitted.

↑[1.5](1 2)(3 4)(5 6)
1 2
3 4
5 6

If ⎕ML≥2 an integer Kmay be used instead (Note that ⊃ is used instead of ↑).

⎕ML←3
⊃(1 2)(3 4)(5 6)

1 2
3 4
5 6

⊃[1](1 2)(3 4)(5 6)
1 3 5
2 4 6

⊃[2](1 2)(3 4)(5 6)
1 2
3 4
5 6

Chapter 1: Primitive Functions 98

Shape Extension
If the items of Y are unequal in shape, the shorter ones are extended:

⎕ML←3
⊃(1)(3 4)(5)

1 0
3 4
5 0

⊃1(3 4)(5)
1 3 5
0 4 0

More Simple Vector Examples:
]box on

Was OFF
'Andy' 'Geoff' 'Pauline'

┌────┬─────┬───────┐
│Andy│Geoff│Pauline│
└────┴─────┴───────┘

↑'Andy' 'Geoff' 'Pauline'
Andy
Geoff
Pauline

⎕ML←3
⊃('andy' 19)('geoff' 37)('pauline' 21)

┌───────┬──┐
│andy │19│
├───────┼──┤
│geoff │37│
├───────┼──┤
│pauline│21│
└───────┴──┘

⊃[1]('andy' 19)('geoff' 37)('pauline' 21)
┌────┬─────┬───────┐
│andy│geoff│pauline│
├────┼─────┼───────┤
│19 │37 │21 │
└────┴─────┴───────┘

⊃('andy' 19)('geoff' 37)(⊂'pauline')
┌───────┬───────┐
│andy │19 │
├───────┼───────┤
│geoff │37 │
├───────┼───────┤
│pauline│ │
└───────┴───────┘

Notice that in the last statement, the shape of the third item was extended by
catenating it with its prototype.

Chapter 1: Primitive Functions 99

Example (Matrix of Vectors)
In the following examples, Y is a matrix of shape (5 4) and each item of Y (y) is a
matrix of shape (3 2). The shape of the result will be some permutation of (5 4 3
2).

Y←5 4⍴(⍳20)×⊂3 2⍴1
Y

┌─────┬─────┬─────┬─────┐
│1 1 │2 2 │3 3 │4 4 │
│1 1 │2 2 │3 3 │4 4 │
│1 1 │2 2 │3 3 │4 4 │
├─────┼─────┼─────┼─────┤
│5 5 │6 6 │7 7 │8 8 │
│5 5 │6 6 │7 7 │8 8 │
│5 5 │6 6 │7 7 │8 8 │
├─────┼─────┼─────┼─────┤
│9 9 │10 10│11 11│12 12│
│9 9 │10 10│11 11│12 12│
│9 9 │10 10│11 11│12 12│
├─────┼─────┼─────┼─────┤
│13 13│14 14│15 15│16 16│
│13 13│14 14│15 15│16 16│
│13 13│14 14│15 15│16 16│
├─────┼─────┼─────┼─────┤
│17 17│18 18│19 19│20 20│
│17 17│18 18│19 19│20 20│
│17 17│18 18│19 19│20 20│
└─────┴─────┴─────┴─────┘

By default, the axes of y appear in the last position in the shape of the result, but this
position is altered by specifying the axis K. Notice where the (3 2) appears in the
following results:

⍴⊃Y
5 4 3 2

⍴⊃[1]Y
3 2 5 4

⍴⊃[2]Y
5 3 2 4

⍴⊃[3]Y
5 4 3 2

⍴⊃[4]Y
INDEX ERROR

⍴⊃[4]Y
∧

Note that ⊃[4]Y generates an INDEX ERROR because 4 is greater than the length of
the result.

Chapter 1: Primitive Functions 100

Example (Vector K)
The axes of y do not have to be contiguous in the shape of the result. By specifying a
vector K, they can be distributed. Notice where the 3 and the 2 appear in the
following results:

⍴⊃[1 3]Y
3 5 2 4

⍴⊃[1 4]Y
3 5 4 2

⍴⊃[2 4]Y
5 3 4 2

⍴⊃[4 2]Y
5 2 4 3

Rank Extension
If the items of Y are unequal in rank, the lower rank items are extended in rank by
prefixing their shapes with 1s. Each additional 1 may then be increased to match the
maximum shape of the other items along that axis.

⎕ML←3
Y←(1)(2 3 4 5)(2 3⍴10×⍳8)
Y

┌─┬───────┬────────┐
│1│2 3 4 5│10 20 30│
│ │ │40 50 60│
└─┴───────┴────────┘

⍴⊃Y
3 2 4

⊃Y
1 0 0 0
0 0 0 0

2 3 4 5
0 0 0 0

10 20 30 0
40 50 60 0

In the above example, the first item (1) becomes (1 1⍴1) to conform with the 3rd
item which is rank 2. It is then extended in shape to become (2 4↑1 1⍴1) to
conform with the 2-row 3rd item, and 4-column 2nd item.. Likewise, the 2nd item
becomes a 2-row matrix, and the 3rd item gains another column.

Chapter 1: Primitive Functions 101

Multiply R←X×Y

Ymay be any numeric array. Xmay be any numeric array. R is the arithmetic
product of X and Y.

This function is also known as Times.

Example
3 2 1 0 × 2 4 9 6

6 8 9 0

2j3×.3j.5 1j2 3j4 .5
¯0.9J1.9 ¯4J7 ¯6J17 1J1.5

Nand R←X⍲Y

Ymust be a Boolean array. Xmust be a Boolean array. R is Boolean. The value of R
is the truth value of the proposition "not both X and Y", and is determined as follows:

X Y R

0 0 1
0 1 1
1 0 1
1 1 0

Example
(0 1)(1 0) ⍲ (0 0)(1 1)

1 1 0 1

Chapter 1: Primitive Functions 102

Natural Logarithm R←⍟Y

Ymust be a positive numeric array. R is numeric. R is the natural (or Napierian)
logarithm of Y whose base is the mathematical constant e=2.71828....

Example
⍟1 2

0 0.6931471806

⍟2 2⍴0j1 1j2 2j3 3j4
0.000000000J1.570796327 0.8047189562J1.107148718
1.282474679J0.9827937232 1.6094379120J0.927295218

Negative R←-Y

Ymay be any numeric array. R is numeric and is the negative value of Y. For complex
numbers both the real and imaginary parts are negated.

Example
-4 2 0 ¯3 ¯5

¯4 ¯2 0 3 5

-1j2 ¯2J3 4J¯5
¯1J¯2 2J¯3 ¯4J5

Chapter 1: Primitive Functions 103

Nest R←⊆Y

Classic Edition: the symbol ⊆ (Left Shoe Underbar) is not available in Classic
Edition, and Nest is instead represented by ⎕U2286.

Ymay be any array.

If Y is simple, R is a scalar array whose item is the array Y. If Y is a simple scalar or is
already nested, R is Y unchanged.

Examples
⊆1 2 3

┌─────┐
│1 2 3│
└─────┘

⊆ 1 (1 2 3)
┌─┬─────┐
│1│1 2 3│
└─┴─────┘

⊆'Dyalog'
┌──────┐
│Dyalog│
└──────┘

⊆'Dyalog' 'APL'
┌──────┬───┐
│Dyalog│APL│
└──────┴───┘

Nor R←X⍱Y

Ymust be a Boolean array. Xmust be a Boolean array. R is Boolean. The value of R
is the truth value of the proposition "neither X nor Y", and is determined as follows:

X Y R

0 0 1
0 1 0
1 0 0
1 1 0

Example
0 0 1 1 ⍱ 0 1 0 1

1 0 0 0

Chapter 1: Primitive Functions 104

Not R←~Y

Ymust be a Boolean array. R is Boolean. The value of R is 0 if Y is 1, and R is 1 if Y
is 0.

Example
~0 1

1 0

Not Equal R←X≠Y

Ymay be any array. Xmay be any array. R is Boolean. R is 0 if X=Y. Otherwise R is
1.

For Boolean X and Y, the value of R is the exclusive or (XOR) result, determined as
follows:

X Y R

0 0 0
0 1 1
1 0 1
1 1 0

⎕CT and ⎕DCT are implicit arguments of Not Equal.

Examples
1 2 3 ≠ 1.1 2 3

1 0 0

⎕CT←1E¯10

1≠1 1.00000000001 1.0000001
0 0 1

1 2 3 ≠'CAT'
1 1 1

Chapter 1: Primitive Functions 105

Not Match R←X≢Y

Y may be any array. Xmay be any array. R is a simple Boolean scalar. If X is
identical to Y, then R is 0. Otherwise R is 1.

Non-empty arrays are identical if they have the same structure and the same values in
all corresponding locations. Empty arrays are identical if they have the same shape
and the same prototype (disclosed nested structure).

⎕CT and ⎕DCT are implicit arguments of Not Match.

Examples
⍬≢⍳0

0
''≢⍳0

1

⊢A←⊂(⍳3) 'ABC'
1 2 3 ABC

A≢(⍳3)'ABC'
1

A≢⊂(⍳3) 'ABC'
0

⍬≢0⍴A
1

(1↑0⍴A)≢⊂(0 0 0) ' '
1

Chapter 1: Primitive Functions 106

Or, Greatest Common Divisor R←X∨Y

Case 1: X and Y are Boolean
R is Boolean and is determined as follows:

X Y R

0 0 0
0 1 1
1 0 1
1 1 1

Example
0 0 1 1 ∨ 0 1 0 1

0 1 1 1

Case 2: X and Y are numeric (non-Boolean)
R is the Greatest Common Divisor of X and Y. Note that in this case, ⎕CT and ⎕DCT
are implicit arguments.

Examples
15 1 2 7 ∨ 35 1 4 0

5 1 2 7

rational←{↑⍵ 1÷⊂1∨⍵} ⍝ rational (⎕CT) approximation
⍝ to floating array.

rational 0.4321 0.1234 6.66, ÷1 2 3
4321 617 333 1 1 1

10000 5000 50 1 2 3

Chapter 1: Primitive Functions 107

Partition R←X⊆[K]Y

Classic Edition: the symbol ⊆ (Left Shoe Underbar) is not available in Classic
Edition, and Partition is instead represented by ⎕U2286.

Ymay be any non-scalar array.

Xmust be a simple scalar or vector of non-negative integers.

The axis specification is optional. If present, it must be a simple integer scalar or one
element array representing an axis of Y. If absent, the last axis is implied.

R is an array of the elements of Y partitioned according to X.

A new partition is started in the result whenever the corresponding element in X is
greater than the previous one. Items in Y corresponding to 0s in X are not included in
the result.

Note that if ⎕ML≥3, the symbol ⊂means the same as ⊆.

Examples
⎕ML←3

]display 1 1 1 2 2 3 3 3⊆'NOWISTHE'
┌→─────────────────┐
│ ┌→──┐ ┌→─┐ ┌→──┐ │
│ │NOW│ │IS│ │THE│ │
│ └───┘ └──┘ └───┘ │
└∊─────────────────┘

]display 1 1 1 0 0 3 3 3⊆'NOWISTHE'
┌→────────────┐
│ ┌→──┐ ┌→──┐ │
│ │NOW│ │THE│ │
│ └───┘ └───┘ │
└∊────────────┘

TEXT←' NOW IS THE TIME '
]display (' '≠TEXT)⊂TEXT

┌→────────────────────────┐
│ ┌→──┐ ┌→─┐ ┌→──┐ ┌→───┐ │
│ │NOW│ │IS│ │THE│ │TIME│ │
│ └───┘ └──┘ └───┘ └────┘ │
└∊────────────────────────┘

Chapter 1: Primitive Functions 108

]display CMAT←⎕FMT(' ',ROWS),COLS⍪NMAT
┌→─────────────────────────┐
↓ Jan Feb Mar │
│ Cakes 0 100 150 │
│ Biscuits 0 0 350 │
│ Buns 0 1000 500 │
└──────────────────────────┘

]display (∨⌿' '≠CMAT)⊆CMAT ⍝ Split at blank cols.
┌→──────────────────────────────┐
↓ ┌→───────┐ ┌→──┐ ┌→───┐ ┌→──┐ │
│ │ │ │Jan│ │ Feb│ │Mar│ │
│ └────────┘ └───┘ └────┘ └───┘ │
│ ┌→───────┐ ┌→──┐ ┌→───┐ ┌→──┐ │
│ │Cakes │ │ 0│ │ 100│ │150│ │
│ └────────┘ └───┘ └────┘ └───┘ │
│ ┌→───────┐ ┌→──┐ ┌→───┐ ┌→──┐ │
│ │Biscuits│ │ 0│ │ 0│ │350│ │
│ └────────┘ └───┘ └────┘ └───┘ │
│ ┌→───────┐ ┌→──┐ ┌→───┐ ┌→──┐ │
│ │Buns │ │ 0│ │1000│ │500│ │
│ └────────┘ └───┘ └────┘ └───┘ │
└∊──────────────────────────────┘

]display N←4 4⍴⍳16
┌→──────────┐
↓ 1 2 3 4│
│ 5 6 7 8│
│ 9 10 11 12│
│13 14 15 16│
└~──────────┘

]display 1 1 0 1⊆N
┌→─────────────┐
↓ ┌→──┐ ┌→┐ │
│ │1 2│ │4│ │
│ └~──┘ └~┘ │
│ ┌→──┐ ┌→┐ │
│ │5 6│ │8│ │
│ └~──┘ └~┘ │
│ ┌→───┐ ┌→─┐ │
│ │9 10│ │12│ │
│ └~───┘ └~─┘ │
│ ┌→────┐ ┌→─┐ │
│ │13 14│ │16│ │
│ └~────┘ └~─┘ │
└∊─────────────┘

Chapter 1: Primitive Functions 109

]display 1 1 0 1⊆[1]N
┌→────────────────────────┐
↓ ┌→──┐ ┌→──┐ ┌→──┐ ┌→──┐ │
│ │1 5│ │2 6│ │3 7│ │4 8│ │
│ └~──┘ └~──┘ └~──┘ └~──┘ │
│ ┌→─┐ ┌→─┐ ┌→─┐ ┌→─┐ │
│ │13│ │14│ │15│ │16│ │
│ └~─┘ └~─┘ └~─┘ └~─┘ │
└∊────────────────────────┘

Partitioned Enclose (⎕ML<3) R←X⊂[K]Y

Ymay be any array. Xmust be a simple Boolean scalar or vector.

The axis specification is optional. If present, it must be a simple integer scalar or
one-element vector. The value of Kmust be an axis of Y. If absent, the last axis of Y
is implied.

Xmust have the same length as the Kth axis of Y. However, if X is a scalar or one-
element vector, it will be extended to the length of the Kth axis of Y.

R is a vector of items selected from Y. The sub-arrays identified along the Kth axis of
Y at positions corresponding to each 1 in X up to the position before the next 1 in X
(or the last element of X) become the successive items of R. The length of R is +/X
(after possible extension).

Examples
0 1 0 0 1 1 0 0 0 ⊂⍳9

2 3 4 5 6 7 8 9

1 0 1 ⊂[1] 3 4⍴⍳12
1 2 3 4 9 10 11 12
5 6 7 8

1 0 0 1 ⊂[2]3 4⍴⍳12
1 2 3 4
5 6 7 8
9 10 11 12

Chapter 1: Primitive Functions 110

Pi Times R←○Y

Ymay be any numeric array. R is numeric. The value of R is the product of the
mathematical constant π=3.14159... (Pi), and Y.

Example
○0.5 1 2

1.570796327 3.141592654 6.283185307

○0J1
0J3.141592654

*○0J1 ⍝ Euler
¯1

Pick R←X⊃Y

Ymay be any array.

X is a scalar or vector of indices of Y.

R is an item selected from the structure of Y according to X.

Elements of X select from successively deeper levels in the structure of Y. The items
of X are simple integer scalars or vectors which identify a set of indices, one per axis
at the particular level of nesting of Y in row-major order. Simple scalar items in Y
may be picked by empty vector items in X to any arbitrary depth.

⎕IO is an implicit argument of Pick.

Examples
G←('ABC' 1)('DEF' 2)('GHI' 3)('JKL' 4)

G←2 3⍴G,('MNO' 5)('PQR' 6)

G
ABC 1 DEF 2 GHI 3
JKL 4 MNO 5 PQR 6

((⊂2 1),1)⊃G
JKL

(⊂2 1)⊃G
JKL 4

Chapter 1: Primitive Functions 111

((2 1)1 2)⊃G
K

(5⍴⊂⍳0)⊃10
10

Plus R←X+Y

See Add on page 11.

Power R←X*Y

Ymust be a numeric array. Xmust be a numeric array. R is numeric. The value of R
is X raised to the power of Y.

If Y is zero, R is defined to be 1.

If X is zero, Ymust be non-negative.

In general, if X is negative, the result R is likely to be complex.

Examples
2*2 ¯2

4 0.25

9 64*0.5
3 8

¯27*3 2 1.2 .5
¯19683 729 ¯42.22738244J¯30.67998919 0J5.196152423

Chapter 1: Primitive Functions 112

Ravel R←,Y

Ymay be any array. R is a vector of the elements of Y taken in row-major order.

Examples
M

1 2 3
4 5 6

,M
1 2 3 4 5 6

A
ABC
DEF
GHI
JKL

,A
ABCDEFGHIJKL

⍴,10
1

See also: Ravel with Axes below.

Ravel with Axes R←,[K]Y

Ymay be any array.

K is either:

l A simple fractional scalar adjacent to an axis of Y, or
l A simple integer scalar or vector of axes of Y, or
l An empty vector

Ravel with axis can be used with selective specification.

R depends on the case of K above.

If K is a fraction, the result R is an array of the same shape as Y, but with a new axis of
length 1 inserted at the Kth position.

⍴⍴R ←→ 1+⍴⍴Y
⍴R ←→ (1,⍴Y)[⍋K,⍳⍴⍴Y]

Chapter 1: Primitive Functions 113

Examples
,[0.5]'ABC'

ABC
⍴,[0.5]'ABC'

1 3
,[1.5]'ABC'

A
B
C

⍴,[1.5]'ABC'
3 1

MAT←3 4⍴⍳12
⍴,[0.5]MAT

1 3 4
⍴,[1.5]MAT

3 1 4
⍴,[2.5]MAT

3 4 1

If K is an integer scalar or vector of axes of Y, then:

l K must contain contiguous axes of Y in ascending order
l R contains the elements of Y ravelled along the indicated axes

Note that if K is a scalar or single element vector, R ←→ Y.

⍴⍴R ←→ 1+(⍴⍴Y)-⍴,K

Examples
M

 1 2 3 4
 5 6 7 8
 9 10 11 12

13 14 15 16
17 18 19 20
21 22 23 24

⍴M
2 3 4

Chapter 1: Primitive Functions 114

,[1 2]M
 1 2 3 4
 5 6 7 8
 9 10 11 12
13 14 15 16
17 18 19 20
21 22 23 24

⍴,[1 2]M
6 4

,[2 3]M
 1 2 3 4 5 6 7 8 9 10 11 12
13 14 15 16 17 18 19 20 21 22 23 24

⍴,[2 3]M
2 12

If K is an empty vector a new last axis of length 1 is created.

⍴R ←→ (⍴Y),1

Examples
Q1←'January' 'February' 'March'
]display Q1

┌→─────────────────────────────┐
│ ┌→──────┐ ┌→───────┐ ┌→────┐ │
│ │January│ │February│ │March│ │
│ └───────┘ └────────┘ └─────┘ │
└∊─────────────────────────────┘

]display ,[⍳0]Q1
┌→───────────┐
↓ ┌→──────┐ │
│ │January│ │
│ └───────┘ │
│ ┌→───────┐ │
│ │February│ │
│ └────────┘ │
│ ┌→────┐ │
│ │March│ │
│ └─────┘ │
└∊───────────┘

See also: Ravel on page 112.

Chapter 1: Primitive Functions 115

Reciprocal R←÷Y

Ymust be a numeric array. R is numeric. R is the reciprocal of Y; that is 1÷Y. If
⎕DIV=0, ÷0 results in a DOMAIN ERROR. If ⎕DIV=1, ÷0 returns 0.

⎕DIV is an implicit argument of Reciprocal.

Examples
÷4 2 5

0.25 0.5 0.2

÷0j1 0j¯1 2j2 4j4
0J¯1 0J1 0.25J¯0.25 0.125J¯0.125

⎕DIV←1
÷0 0.5

0 2

Replicate R←X/[K]Y

Ymay be any array. X is a simple integer vector or scalar.

The axis specification is optional. If present, Kmust be a simple integer scalar or 1-
element vector. The value of Kmust be an axis of Y. If absent, the last axis of Y is
implied. The form R←X⌿Y implies the first axis of Y.

If Y has length 1 along the Kth (or implied) axis, it is extended along that axis to
match the length of X. Otherwise, the length of Xmust be the length of the Kth (or
implied) axis of Y. However, if X is a scalar or one-element vector, it will be extended
to the length of the Kth axis.

R is composed from sub-arrays along the Kth axis of Y. If X[I] (an element of X) is
positive, then the corresponding sub-array is replicated X[I] times. If X[I] is zero,
then the corresponding sub-array of Y is excluded. If X[I] is negative, then the fill
element of Y is replicated |X[I] times. Each of the (replicated) sub-arrays and fill
items are joined along the Kth axis in the order of occurrence. The shape of R is the
shape of Y except that the length of the (implied) Kth axis is +/|X (after possible
extension).

This function is sometimes called Compress when X is Boolean.

Chapter 1: Primitive Functions 116

Examples
1 0 1 0 1/⍳5

1 3 5

1 ¯2 3 ¯4 5/⍳5
1 0 0 3 3 3 0 0 0 0 5 5 5 5 5

M
1 2 3
4 5 6

2 0 1/M
1 1 3
4 4 6

0 1⌿M
4 5 6

0 1/[1]M
4 5 6

If Y is a singleton (1=×/⍴,Y) its value is notionally extended to the length of X
along the specified axis.

1 0 1/4
4 4

1 0 1/,3
3 3

1 0 1/1 1⍴5
5 5

Chapter 1: Primitive Functions 117

Reshape R←X⍴Y

Ymay be any array. Xmust be a simple scalar or vector of non-negative integers. R
is an array of shape X whose elements are taken from Y in row-major sequence and
repeated cyclically if required. If Y is empty, R is composed of fill elements of Y
(⊂∊⊃Y with ⎕ml←0). If X contains at least one zero, then R is empty. If X is an
empty vector, then R is scalar.

Examples
2 3⍴⍳8

1 2 3
4 5 6

2 3⍴⍳4
1 2 3
4 1 2

2 3⍴⍳0
0 0 0
0 0 0

Residue R←X|Y

Ymay be any numeric array. Xmay be any numeric array.

For positive arguments, R is the remainder when Y is divided by X. If X=0, R is Y.

For other argument values, R is given by the expression Y-X×⌊Y÷X+0=X. This
expression also applies when X and/or Y are complex if the simple ⌊ is replaced by
the CpxFloor function. See Complex Floor on page 51.

⎕CT and ⎕DCT are implicit arguments of Residue.

Examples
3 3 ¯3 ¯3|¯5 5 ¯4 4

1 2 ¯1 ¯2

0.5|3.12 ¯1 ¯0.6
0.12 0 0.4

¯1 0 1|¯5.25 0 2.41
¯0.25 0 0.41

1j2|2j3 3j4 5j6
1J1 ¯1J1 0J1

Note that the ASCII Broken Bar (⎕UCS 166, U+00A6) is not interpreted as Residue.

Chapter 1: Primitive Functions 118

Reverse R←⌽[K]Y

Ymay be any array. The axis specification is optional. If present, Kmust be an
integer scalar or one-element vector. The value of Kmust be an axis of Y. If absent,
the last axis is implied. The form R←⊖Y implies the first axis.

R is the array Y reversed on the Kth or implied axis.

Examples
⌽1 2 3 4 5

5 4 3 2 1

M
1 2 3
4 5 6

⌽M
3 2 1
6 5 4

⊖M
4 5 6
1 2 3

⌽[1]M
4 5 6
1 2 3

Reverse First R←⊖[K]Y

The form R←⊖Y implies reversal along the first axis. See Reverse above.

Chapter 1: Primitive Functions 119

Right R←X⊢Y

X and Ymay be any arrays. The result R is the right argument Y.

Examples
42 ⊢'abc' 1 2 3

 abc 1 2 3

32+1.8×⊢0 100 ⍝ {32+1.8÷⍵} 0 100
32 212

(⊢÷+/) 4 3 0 1 ⍝ {⍵÷+/⍵} 4 3 0 1
0.5 0.375 0 0.125

↓⍣2⊢2 2 2 2⍴⎕A ⍝ (↓⍣2)2 2 2 2⍴⎕A
AB CD EF GH
IJ KL MN OP

When ⊢ is applied using reduction, the derived function selects the last sub-array of
the array along the specified dimension. This is implemented as an idiom.

Examples
⊢/1 2 3

3
mat←↑'scent' 'canoe' 'arson' 'rouse' 'fleet'

⊢⌿mat ⍝ last row
fleet

⊢/mat ⍝ last column
tenet

⊢/[2]2 3 4⍴⍳24 ⍝ last row from each plane
9 10 11 12

21 22 23 24

Chapter 1: Primitive Functions 120

Roll R←?Y

Ymay be any non-negative integer array. R has the same shape as Y at each depth.

For each positive element of Y the corresponding element of R is an integer, pseudo-
randomly selected from the integers ⍳Y with each integer in this population having
an equal chance of being selected.

For each zero element of Y, the corresponding element of R is a pseudo-random
floating-point value in the range 0 - 1, but excluding 0 and 1, i.e. (0<R[I]<1).

⎕IO and ⎕RL are implicit arguments of Roll. A side effect of Roll is to change the
value of ⎕RL.

Note that different random number generators are available; see ⎕RL for more
information.

Examples
?9 9 9

2 7 5
?3⍴0

0.3205466592 0.3772891947 0.5456603511

Chapter 1: Primitive Functions 121

Rotate R←X⌽[K]Y

Ymay be any array. Xmust be a simple integer array. The axis specification is
optional. If present, Kmust be a simple integer scalar or one-element vector.

The value of Kmust be an axis of Y. If absent, the last axis of Y is implied. The form
R←X⊖Y implies the first axis.

Xmust have the same shape as Y, excluding Y's Kth axis. Otherwise, if X is a one-
element array, it will be extended to conform.

R is an array with the same shape as Y, with the elements of each of the vectors along
the Kth axis of Y rotated by the value of the corresponding element of X. If the value
is positive, the rotation is in the sense of right to left. If the value is negative, the
rotation is in the sense of left to right.

Examples
3 ⌽ 1 2 3 4 5 6 7

4 5 6 7 1 2 3
¯2 ⌽ 1 2 3 4 5

4 5 1 2 3

M
1 2 3 4
5 6 7 8

9 10 11 12
13 14 15 16

I
0 1 ¯1 0
0 3 2 1

I⌽[2]M
1 6 7 4
5 2 3 8

9 14 11 16
13 10 15 12

Chapter 1: Primitive Functions 122

J
2 ¯3
3 ¯2

J⌽M
3 4 1 2
6 7 8 5

12 9 10 11
15 16 13 14

Rotate First R←X⊖[K]Y

The form R←X⊖Y implies rotation along the first axis. See Rotate above.

Chapter 1: Primitive Functions 123

Same R←⊣Y
R←⊢Y

Ymay be any array.

The result R is the argument Y.

Examples
⊣'abc' 1 2 3

abc 1 2 3

(⊢,⎕size) 'a'⎕nl 4 ⍝ left tine of fork meaning "it"
acc 572
and 492
ascan 740
ascana 716
at 1764
avl 17476

Chapter 1: Primitive Functions 124

Shape R←⍴Y

Ymay be any array. R is a non-negative integer vector whose elements are the
dimensions of Y. If Y is a scalar, then R is an empty vector. The rank of Y is given by
⍴⍴Y.

Examples
⍴10

⍴'CAT'
3

⍴3 4⍴⍳12
3 4

+G←(2 3⍴⍳6)('CAT' 'MOUSE' 'FLEA')
1 2 3 CAT MOUSE FLEA
4 5 6

⍴G
2

⍴⍴G
1

⍴¨G
2 3 3

⍴¨¨G
3 5 4

Chapter 1: Primitive Functions 125

Split R←↓[K]Y

Ymay be any array. The axis specification is optional. If present, Kmust be a simple
integer scalar or one-element vector. The value of Kmust be an axis of Y. If absent,
the last axis is implied.

The items of R are the sub-arrays of Y along the Kth axis. R is a scalar if Y is a scalar.
Otherwise R is an array whose rank is ¯1+⍴⍴Y and whose shape is (K≠⍳⍴⍴Y)/⍴Y.

Examples
↓3 4⍴'MINDTHATSTEP'

MIND THAT STEP

↓2 5⍴⍳10
1 2 3 4 5 6 7 8 9 10

↓[1]2 5⍴⍳10
1 6 2 7 3 8 4 9 5 10

Subtract R←X-Y

Ymay be any numeric array. Xmay be any numeric array. R is numeric. The value of
R is the difference between X and Y.

This function is also known as Minus.

Example
3 ¯2 4 0 - 2 1 ¯2 4

1 ¯3 6 ¯4

2j3-.3j5 ⍝ (a+bi)-(c+di) = (a-c)+(b-d)i
1.7J¯2

Chapter 1: Primitive Functions 126

Table R←⍪Y

Ymay be any array. R is a 2-dimensional matrix of the elements of Y taken in row-
major order, preserving the shape of the first dimension of Y if it exists

Table has been implemented according to the Extended APL Standard (ISO/IEC
13751:2001).

Examples
]display {⍵ (⍴⍵)} ⍪'a'

┌→──────────┐
│ ┌→┐ ┌→──┐ │
│ ↓a│ │1 1│ │
│ └─┘ └~──┘ │
└∊──────────┘

]display {⍵ (⍴⍵)} ⍪'hello'
┌→──────────┐
│ ┌→┐ ┌→──┐ │
│ ↓h│ │5 1│ │
│ │e│ └~──┘ │
│ │l│ │
│ │l│ │
│ │o│ │
│ └─┘ │
└∊──────────┘

]display {⍵ (⍴⍵)} ⍪2 3 4⍴⍳24
┌→───┐
│ ┌→──────────────────────────────────┐ ┌→───┐ │
│ ↓ 1 2 3 4 5 6 7 8 9 10 11 12│ │2 12│ │
│ │13 14 15 16 17 18 19 20 21 22 23 24│ └~───┘ │
│ └~──────────────────────────────────┘ │
└∊───┘

Chapter 1: Primitive Functions 127

Take R←X↑Y

Ymay be any array. Xmust be a simple integer scalar or vector.

If Y is a scalar, it is treated as a one-element array of shape (⍴,X)⍴1. The length of
Xmust be the same as or less than the rank of Y. If the length of X is less than the rank
of Y, the missing elements of X default to the length of the corresponding axis of Y.

R is an array of the same rank as Y (after possible extension), and of shape |X. If X
[I] (an element of X) is positive, then X[I] sub-arrays are taken from the beginning
of the Ith axis of Y. If X[I] is negative, then X[I] sub-arrays are taken from the end
of the Ith axis of Y.

If more elements are taken than exist on axis I, the extra positions in R are filled with
the fill element of Y (⊂∊⊃Y with ⎕ml←0).

Examples
5↑'ABCDEF'

ABCDE

5↑1 2 3
1 2 3 0 0

¯5↑1 2 3
0 0 1 2 3

5↑(⍳3) (⍳4) (⍳5)
1 2 3 1 2 3 4 1 2 3 4 5 0 0 0 0 0 0

M
1 2 3 4
5 6 7 8

2 3↑M
1 2 3
5 6 7

¯1 ¯2↑M
7 8

M3←2 3 4⍴⎕A
1↑M3

ABCD
EFGH
IJKL

¯1↑M3
MNOP
QRST
UVWX

Chapter 1: Primitive Functions 128

Take with Axes R←X↑[K]Y

Ymay be any non-scalar array. Xmust be a simple integer scalar or vector. K is a
vector of zero or more axes of Y.

R is an array of the first or last elements of Y taken along the axes K depending on
whether the corresponding element of X is positive or negative respectively.

The rank of R is the same as the rank of Y:

⍴⍴R ←→ ⍴⍴Y

The size of each axis of R is determined by the corresponding element of X:

(⍴R)[,K] ←→ |,X

Examples
⎕←M←2 3 4⍴⍳24

1 2 3 4
5 6 7 8
9 10 11 12

13 14 15 16
17 18 19 20
21 22 23 24

2↑[2]M
1 2 3 4
5 6 7 8

13 14 15 16
17 18 19 20

2↑[3]M
1 2
5 6
9 10

13 14
17 18
21 22

2 ¯2↑[3 2]M
5 6
9 10

17 18
21 22

Chapter 1: Primitive Functions 129

Tally R←≢Y

Ymay be any array. R is a simple numeric scalar.

Tally returns the number of major cells of Y. See Programming Reference Guide:
Cells and Subarrays.

This can also be expressed as the length of the leading axis or 1 if Y is a scalar. Tally
is equivalent to the function {⍬⍴(⍴⍵),1}.

Examples
≢2 3 4⍴⍳10

2
≢2

1
≢⍬

0

Note that ≢V is useful for returning the length of vector V as a scalar. (In contrast, ⍴V
is a one-element vector.)

Times R←X×Y

SeeMultiply on page 101.

Transpose (Monadic) R←⍉Y

Ymay be any array. R is an array of shape ⌽⍴Y, similar to Y with the order of the axes
reversed.

Examples
M

1 2 3
4 5 6

⍉M
1 4
2 5
3 6

Chapter 1: Primitive Functions 130

Transpose (Dyadic) R←X⍉Y

Ymay be any array. Xmust be a simple scalar or vector whose elements are included
in the set ⍳⍴⍴Y. Integer values in Xmay be repeated but all integers in the set ⍳⌈/X
must be included. The length of Xmust equal the rank of Y.

R is an array formed by the transposition of the axes of Y as specified by X. The Ith
element of X gives the new position for the Ith axis of Y. If X repositions two or more
axes of Y to the same axis, the elements used to fill this axis are those whose indices
on the relevant axes of Y are equal.

⎕IO is an implicit argument of Dyadic Transpose.

Examples
A

1 2 3 4
5 6 7 8
9 10 11 12

13 14 15 16
17 18 19 20
21 22 23 24

2 1 3⍉A
1 2 3 4

13 14 15 16

5 6 7 8
17 18 19 20

9 10 11 12
21 22 23 24

1 1 1⍉A
1 18

1 1 2⍉A
1 2 3 4

17 18 19 20

Chapter 1: Primitive Functions 131

Alternative Explanation
Assign a distinct letter for each unique integer in X :

0 1 2 3 …
i j k l

If R←X⍉Y, then R[i;j;k;…] equals Y indexed by the letters corresponding to
elements of X .

For example:
⎕IO←0

Y← ? 5 13 19 17 11 ⍴ 100

X← 2 1 2 0 1
⍝ k j k i j

R←X⍉Y

i←?17 ⋄ j←?11 ⋄ k←?5
R[i;j;k] = Y[k;j;k;i;j]

1
R[i;j;k]=Y[⊂⍎¨'ijk'[X]]

1

From the above it can be seen that:

l the rank of R is 0⌈1+⌈/X
l the shape of R is (⍴Y)⌊.+(⌈/⍴Y)×X∘.≠⍳0⌈1+⌈/X

Chapter 1: Primitive Functions 132

Type (⎕ML<1) R←∊Y

Migration level must be such that ⎕ML<1 (otherwise ∊means Enlist. See Enlist on
page 44).

Ymay be any array. R is an array with the same shape and structure as Y in which a
numeric value is replaced by 0 and a character value is replaced by ' '.

Examples
∊(2 3⍴⍳6)(1 4⍴'TEXT')

0 0 0
0 0 0

' '=∊'X'
1

Union R←X∪Y

Ymust be a vector. Xmust be a vector. If either argument is a scalar, it is treated as a
one-element vector. R is a vector of the elements of X catenated with the elements of
Y which are not found in X.

Items in X and Y are considered the same if X≡Y returns 1 for those items.

⎕CT and ⎕DCT are implicit arguments of Union.

Examples
'WASH' ∪ 'SHOUT'

WASHOUT

'ONE' 'TWO' ∪ 'TWO' 'THREE'
ONE TWO THREE

For performance information, see Programming Reference Guide: Search Functions
and Hash Tables.

Chapter 1: Primitive Functions 133

Unique R←∪Y

Ymay be any array. R is a vector of the unique major cells of Y (the unique items of a
vector, the unique rows of a matrix and so forth), in the order in which they first
appear in Y. For further information, see Programming Reference Guide: Cells and
Subarrays.

⎕CT and ⎕DCT are implicit arguments of Unique.

Examples
∪ 22 10 22 22 21 10 5 10

22 10 21 5

∪ v←'CAT' 'DOG' 'CAT' 'DUCK' 'DOG' 'DUCK'
┌───┬───┬────┐
│CAT│DOG│DUCK│
└───┴───┴────┘

⊢mat←↑v
CAT
DOG
CAT
DUCK
DOG
DUCK

∪mat
CAT
DOG
DUCK

a←3 4 5⍴⍳20
a

1 2 3 4 5
6 7 8 9 10

11 12 13 14 15
16 17 18 19 20

1 2 3 4 5
6 7 8 9 10

11 12 13 14 15
16 17 18 19 20

1 2 3 4 5
6 7 8 9 10

11 12 13 14 15
16 17 18 19 20

∪a
1 2 3 4 5
6 7 8 9 10

11 12 13 14 15
16 17 18 19 20

Chapter 1: Primitive Functions 134

Where R←⍸Y

Classic Edition: the symbol ⍸ (Iota Underbar) is not available in Classic Edition, and
Where is instead represented by ⎕U2378.

Ymust be a simple Boolean array.

R is a vector of the indices of all the 1s in Y. If Y is all zeros, R is an empty vector.

⎕IO is an implicit argument ofWhere.

Examples
⎕IO

1
⍸ 1 0 1 0 0 0 0 1 0

1 3 8

⍸'e'='Pete'
2 4

3 4⍴0 1 1
0 1 1 0
1 1 0 1
1 0 1 1

⍸ 3 4⍴0 1 1
┌───┬───┬───┬───┬───┬───┬───┬───┐
│1 2│1 3│2 1│2 2│2 4│3 1│3 3│3 4│
└───┴───┴───┴───┴───┴───┴───┴───┘

⍸2 3 4⍴0 0 0 0 1
┌─────┬─────┬─────┬─────┐
│1 2 1│1 3 2│2 1 3│2 2 4│
└─────┴─────┴─────┴─────┘

⍸3 1 4 2
DOMAIN ERROR

⍸3 1 4 2
∧

Without R←X~Y

See Excluding on page 46.

Zilde R←⍬

The empty vector (⍳0) may be represented by the numeric constant ⍬ called ZILDE.

Chapter 2: Primitive Operators 135

Chapter 2:

Primitive Operators

Operator Syntax
Operators take one or two operands. An operator with one operand is monadic. The
operand of a monadic operator is to the left of the operator. An operator with two
operands is dyadic. Both operands are required for a dyadic operator.

Operators have long scope to the left. That is, the left operand is the longest function
or array expression to its left (see Programming Reference Guide: Operators). A
dyadic operator has short scope on the right. Right scope may be extended by the
use of parentheses.

An operand may be an array, a primitive function, a system function, a defined
function or a derived function. An array may be the result of an array expression.

An operator with its operand(s) forms a derived function. The derived function may
be monadic or dyadic and it may or may not return an explicit result.

Examples
+/⍳5

15
(*∘2)⍳3

1 4 9

PLUS ← + ⋄ TIMES ← ×
1 PLUS.TIMES 2

2

⎕NL 2
A
X

⎕EX¨↓⎕NL 2
⎕NL 2

Chapter 2: Primitive Operators 136

Monadic Operators
Like primitive functions, monadic operators can be:

l named
l enclosed within parentheses
l displayed in the session

Examples
⎕ ← each ← (¨) ⍝ name and display

¨
shape←⍴
shape each (1 2) (3 4 5)

2 3

slash←/
+slash ⍳10

55
swap←⍨
3 -swap 4

1

Right Operand Currying
A dyadic operator may be bound or curried with its right operand to form a monadic
operator:

Examples
⎕ ← inv ← ⍣¯1 ⍝ produces monadic inverse operator

⍣ ¯1
+\inv 1 2 3 ⍝ scan-inverse

1 1 1
lim ← ⍣≡ ⍝ power-limit

1 +∘÷lim 1 ⍝ Phi
1.61803

Chapter 2: Primitive Operators 137

Operators Summarised
Table 8 and Table 9 below summarise the Monadic and Dyadic primitive operators
whose detailed descriptions follow in alphabetical order in this section.

Some operators may include an axis specification (indicated []in the tables). Note
that in these case ⎕IO is an implicit argument of the derived function.

Table 8: Monadic Primitive Operators

Name Producing Monadic
derived function

Producing Dyadic
derived function

Assignment
(Modified) Xf←Y

Assignment (Indexed
Modified) X[I]f←Y

Assignment (Selective
Modified) (EXP X)f←Y

Commute f⍨Y Xf⍨Y

Each f¨Y Xf¨Y

I-Beam A⌶Y X(A⌶)Y

Key f⌸Y Xf⌸Y

Reduction f/Y [] Xf/Y []

Reduction First f⌿Y [] Xf⌿Y []

Scan f\Y []

Scan First f⍀Y []

Spawn f&Y Xf&Y

Chapter 2: Primitive Operators 138

Table 9: Dyadic Primitive Operators

Name Producing Monadic derived
function

Producing Dyadic derived
function

At f@gY Xf@gY

Axis f[B]Y Xf[B]Y

Composition f∘gY Xf∘gY

Composition A∘gY

Composition (f∘B)Y

Inner
Product Xf.gY

Outer
Product X∘.gY

Power f⍣gY Xf⍣gY

Rank f⍤kY Xf⍤kY

Stencil f⌺gY

Variant f⍠gY Xf⍠gY

Chapter 2: Primitive Operators 139

Operators (A-Z)
Monadic and Dyadic primitive operators are presented in alphabetical order of their
descriptive names as shown in Table 8 and Table 9.

Assignment (Modified) {R}←Xf←Y

fmay be any dyadic function which returns an explicit result. Ymay be any array
whose items are appropriate to function f. Xmust be the name of an existing array
whose items are appropriate to function f.

R is the “pass-through” value, that is, the value of Y. If the result of the derived
function is not assigned or used, there is no explicit result.

The effect of the derived function is to reset the value of the array named by X to the
result of XfY.

Examples
A

1 2 3 4 5

A+←10

A
11 12 13 14 15

⎕←A×←2
2

A
22 24 26 28 30

vec←¯4+9?9 ⋄ vec
3 5 1 ¯1 ¯2 4 0 ¯3 2

vec/⍨←vec>0 ⋄vec
3 5 1 4 2

Chapter 2: Primitive Operators 140

Assignment (Indexed Modified) {R}←X[I]f←Y

fmay be any dyadic function which returns an explicit result. Ymay be any array
whose items are appropriate to function f. Xmust be the name of an existing array.
Imust be a valid index specification. The items of the indexed portion of Xmust be
appropriate to function f.

Y is either an array of the same shape as the indices specified by I or a scalar that is
notionally extended to be the same shape as those indices.

The operator loops through the indices specified by I in ravel order. For each
successive index i in the set specified by I, it calculates the result of X[i]fY[i]
and assigns it back to X[i].

R is the "pass-through" value, that is, the value of Y. If the result of the derived
function is not assigned or used, there is no explicit result.

Examples
A

1 2 3 4 5

+A[2 4]+←1
1

A
1 3 3 5 5

A[3]÷←2

A
1 3 1.5 5 5

As the operator performs a loop, if an index in I is repeated, function f will be
applied that number of times and successively to the same item of X.

Example
B←3 5⍴0
B[1 1 3;1 3 3 5]+←1
B

2 0 4 0 2
0 0 0 0 0
1 0 2 0 1

Chapter 2: Primitive Operators 141

Assignment (Selective Modified) {R}←(EXP X)f←Y

fmay be any dyadic function which returns an explicit result. Ymay be any array
whose items are appropriate to function f. Xmust be the name of an existing array.
EXP is an expression that selects elements of X. (See Assignment (Selective) on page
21 for a list of allowed selection functions.) The selected elements of Xmust be
appropriate to function f.

Y is either an array of the same shape as the selected elements of X or a scalar that is
notionally extended to be the same shape as the selection.

The operator loops through the selected elements of X in ravel order. For each
selected element X[i], it calculates the result of X[i]fY[i] and assigns it back to
the same element X[i].

R is the "pass-through" value, that is, the value of Y. If the result of the derived
function is not assigned or used, there is no explicit result.

Example
A

12 36 23 78 30

((A>30)/A) ×← 100
A

12 3600 23 7800 30

As the operator performs a loop, if an element of X is selected more than once,
function f will be applied the corresponding number of times and successively to the
same element of X.

a←3⍴0
(5⍴a)+←1
a

2 2 1

Chapter 2: Primitive Operators 142

At R←{X}(f@g)Y

This operator substitutes selected items in Y with new values or applies a function to
modify selected items in Y.

The right operand g identifies which items of array Y are to be substituted or
modified. It is either:

l an array that specifies a set of indices in Y. If g is a simple scalar or vector,
it selects major cells in Y. If nested, it specifies indices for Choose or Reach
indexing.

l or a function that when applied to Y returns a Boolean array of the same
shape as Y (a mask) in which a 1 indicates that the corresponding item of Y
is to be substituted or modified. Note that the ravel of the mask selects from
the ravel of the right argument's index array.

The left operand f is either:

l an array that contains values to replace those items in Y identified by g
l or a function to be applied to those items, the result of which is used to
replace them. If this function is dyadic, its left argument is the array X. Note
that the function is applied to the sub-array of Y selected by gas a whole
and not to each item separately.

The result R is the same as Y but with the items specified by g substituted or modified
by f.

Chapter 2: Primitive Operators 143

Examples (array @ array)
Replace the 2nd and 4th items of ⍳5:

(10 20@2 4)⍳5 ⍝ 1
1 10 3 20 5

10 20@2 4⍳5
1 10 3 20 5

Replace the 2nd and 4th items of nested vector with ⍬:

(⊂⍬)@2 4 ⍳¨⍳5
┌─┬┬─────┬┬─────────┐
│1││1 2 3││1 2 3 4 5│
└─┴┴─────┴┴─────────┘

Replace the 2nd and 4th rows (major cells) of a matrix:

(2 3⍴10 20)(@2 4)4 3⍴⍳12
1 2 3

10 20 10
7 8 9

20 10 20

Replace first and last elements with 0 using Choose Indexing:

(0@(1 1)(4 3))4 3⍴⍳12
0 2 3
4 5 6
7 8 9

10 11 0

1Note that the expression does not require parentheses because without them, the array 2 4 binds
anyway to the @ operator rather than to the ⍳ function.

Chapter 2: Primitive Operators 144

Replace nested items using Reach Indexing:

G
┌───────┬───────┬───────┐
│┌───┬─┐│┌───┬─┐│┌───┬─┐│
││ABC│1│││DEF│2│││GHI│3││
│└───┴─┘│└───┴─┘│└───┴─┘│
├───────┼───────┼───────┤
│┌───┬─┐│┌───┬─┐│┌───┬─┐│
││JKL│4│││MNO│5│││PQR│6││
│└───┴─┘│└───┴─┘│└───┴─┘│
└───────┴───────┴───────┘

G[((1 2)1)((2 3)2)]
┌───┬─┐
│DEF│6│
└───┴─┘

('' '*' @((1 2)1)((2 3)2)) G
┌───────┬───────┬───────┐
│┌───┬─┐│┌┬─┐ │┌───┬─┐│
││ABC│1││││2│ ││GHI│3││
│└───┴─┘│└┴─┘ │└───┴─┘│
├───────┼───────┼───────┤
│┌───┬─┐│┌───┬─┐│┌───┬─┐│
││JKL│4│││MNO│5│││PQR│*││
│└───┴─┘│└───┴─┘│└───┴─┘│
└───────┴───────┴───────┘

Examples (function@ array)
Replace the 2nd and 4th items of ⍳5 with their reciprocals:

÷@2 4 ⍳5
1 0.5 3 0.25 5

Replace the 2nd and 4th items of ⍳5 with their reversal

⌽@2 4 ⍳5
1 4 3 2 5

Multiply the 2nd and 4th items of ⍳5 by 10:

10×@2 4⍳5
1 20 3 40 5

Replace the 2nd and 4th items by their totals:

+/¨@2 4 ⍳¨⍳5
┌─┬─┬─────┬──┬─────────┐
│1│3│1 2 3│10│1 2 3 4 5│
└─┴─┴─────┴──┴─────────┘

Chapter 2: Primitive Operators 145

Replace the 2nd and 4th rows (major cells) of a matrix with their accumulatives:

(+\@2 4)4 3⍴⍳12
1 2 3
4 9 15
7 8 9

10 21 33

Examples (array @ function)
Replace odd elements with 0:

0@(2∘|)⍳5
0 2 0 4 0

Replace multiples of 3 (note that masked items are substituted in ravel order):

'abcde'@(0=3|⊢) 4 4⍴⍳16
1 2 a 4
5 b 7 8
c 10 11 d

13 14 e 16

Examples (function@ function)
Replace odd elements with their reciprocals:

÷@(2∘|)⍳5
1 2 0.3333333333 4 0.2

Replace odd items of ⍳5 with themselves reversed:

⌽@(2∘|)⍳5
5 2 3 4 1

Chapter 2: Primitive Operators 146

Axis (with Monadic Operand) R←f[B]Y

fmust be a monadic primitive mixed function taken from those shown in Table 10
below, or a function derived from the operators Reduction (/) or Scan (\). Bmust be
a numeric scalar or vector. Ymay be any array whose items are appropriate to
function f. Axis does not follow the normal syntax of an operator.

Table 10: Primitive monadic mixed functions with optional axis.
Function Name Range of B

⌽ or ⊖ Reverse B∊⍳⍴⍴Y

↑ Mix (0≠1|B)^(B>⎕IO-1)^(B<⎕IO+⍴⍴Y)

↓ Split B∊⍳⍴⍴Y

, Ravel fraction, or zero or more axes of Y

⊂ Enclose (B≡⍳0)∨(^/B∊⍳⍴⍴Y)

In most cases, Bmust be an integer which identifies a specific axis of Y. However,
when f is the Mix function (↑), B is a fractional value whose lower and upper integer
bounds select an adjacent pair of axes of Y or an extreme axis of Y.

For Ravel (,) and Enclose (⊂), B can be a vector of two or more axes.

⎕IO is an implicit argument of the derived function which determines the meaning of
B.

Examples
⌽[1]2 3⍴⍳6

4 5 6
1 2 3

↑[.1]'ONE' 'TWO'
OT
NW
EO

Chapter 2: Primitive Operators 147

Axis (with Dyadic Operand) R←Xf[B]Y

fmust be a dyadic primitive scalar function, or a dyadic primitive mixed function
taken from Table 11 below. Bmust be a numeric scalar or vector. X and Ymay be any
arrays whose items are appropriate to function f. Axis does not follow the normal
syntax of an operator.

Table 11: Primitive dyadic mixed functions with optional axis.
Function Name Range of B

/ or ⌿ Replicate B∊⍳⍴⍴Y

\ or ⍀ Expand B∊⍳⍴⍴Y

⊂
Partitioned
Enclose B∊⍳⍴⍴Y

⌽ or ⊖ Rotate B∊⍳⍴⍴Y

, or ⍪ Catenate B∊⍳⍴⍴Y

, or ⍪ Laminate (0≠1|B)^(B>⎕IO-1)^(B<⎕IO+(⍴⍴X)
⌈⍴⍴Y)

↑ Take one or more axes of Y

↓ Drop one or more axes of Y

⌷ Index one or more axes of Y

In most cases, Bmust be an integer value identifying the axis of X and Y along which
function f is to be applied.

Exceptionally, Bmust be a fractional value for the Laminate function (,) whose
upper and lower integer bounds identify a pair of axes or an extreme axis of X and Y.
For Take (↑) and Drop (↓), B can be a vector of two or more axes.

⎕IO is an implicit argument of the derived function which determines the meaning of
B.

Chapter 2: Primitive Operators 148

Examples
1 4 5 =[1] 3 2⍴⍳6

1 0
0 1
1 0

2 ¯2 1/[2]2 3⍴'ABCDEF'
AA C
DD F

'ABC',[1.1]'='
A=
B=
C=

'ABC',[0.1]'='
ABC
===

⎕IO←O

'ABC',[¯0.5]'='
ABC
===

Axis with Scalar Dyadic Functions
The axis operator [X] can take a scalar dyadic function as operand. This has the
effect of "stretching" a lower rank array to fit a higher rank one. The arguments must
be conformable along the specified axis (or axes) with elements of the lower rank
array being replicated along the other axes.

For example, if H is the higher rank array, L the lower rank one, X is an axis
specification, and f a scalar dyadic function, then the expressions Hf[X]L and Lf
[X]H are conformable if (⍴L)←→(⍴H)[X]. Each element of L is replicated along
the remaining (⍴H)~X axes of H.

In the special case where both arguments have the same rank, the right one will play
the role of the higher rank array. If R is the right argument, L the left argument, X is an
axis specification and f a scalar dyadic function, then the expression Lf[X]R is
conformable if (⍴L)←→(⍴R)[X].

Chapter 2: Primitive Operators 149

Examples
mat

10 20 30
40 50 60

mat+[1]1 2 ⍝ add along first axis
11 21 31
42 52 62

mat+[2]1 2 3 ⍝ add along last axis
11 22 33
41 52 63

cube
100 200 300
400 500 600

700 800 900
1000 1100 1200

cube+[1]1 2
101 201 301
401 501 601

702 802 902
1002 1102 1202

cube+[3]1 2 3
101 202 303
401 502 603

701 802 903
1001 1102 1203

cube+[2 3]mat
110 220 330
440 550 660

710 820 930
1040 1150 1260

cube+[1 3]mat
110 220 330
410 520 630

740 850 960
1040 1150 1260

Chapter 2: Primitive Operators 150

Commute {R}←{X}f⍨Y

fmay be any dyadic function. X and Ymay be any arrays whose items are
appropriate to function f.

The derived function is equivalent to YfX. The derived function need not return a
result.

If left argument X is omitted, the right argument Y is duplicated in its place, i.e.

f⍨Y ←→ Y f⍨Y

Examples
N

3 2 5 4 6 1 3

N/⍨2|N
3 5 1 3

⍴⍨3
3 3 3

mean←+/∘(÷∘⍴⍨) ⍝ mean of a vector
mean ⍳10

5.5

The following statements are equivalent:

F/⍨←I
F←F/⍨I
F←I/F

Commute often eliminates the need for parentheses

Chapter 2: Primitive Operators 151

Composition (Form I) {R}←f∘gY

fmay be any monadic function. gmay be any monadic function which returns a
result. Ymay be any array whose items are appropriate to function g. The items of
gYmust be appropriate to function f.

The derived function is equivalent to fgY. The derived function need not return a
result.

Composition allows functions to be glued together to build up more complex
functions.

Examples
RANK ← ⍴∘⍴
RANK ¨ 'JOANNE' (2 3⍴⍳6)

1 2

+/∘⍳¨2 4 6
3 10 21

⎕VR'SUM'
∇ R←SUM X

[1] R←+/X
∇

SUM∘⍳¨2 4 6
3 10 21

Chapter 2: Primitive Operators 152

Composition (Form II) {R}←A∘gY

gmay be any dyadic function. Amay be any array whose items are appropriate to
function g. Ymay be any array whose items are appropriate to function g.

The derived function is equivalent to AgY. The derived function need not return a
result.

Examples
2 2∘⍴ ¨ 'AB'

AA BB
AA BB

SINE ← 1∘○

SINE 10 20 30
¯0.5440211109 0.9129452507 ¯0.9880316241

The following example uses Composition Forms I and II to list functions in the
workspace:

⎕NL 3
ADD
PLUS

⎕∘←∘⎕VR¨↓⎕NL 3
∇ ADD X

[1] →LAB⍴⍨0≠⎕NC'SUM' ⋄ SUM←0
[2] LAB:SUM←SUM++/X

∇
∇ R←A PLUS B

[1] R←A+B
∇

Chapter 2: Primitive Operators 153

Composition (Form III) {R}←(f∘B)Y

fmay be any dyadic function. Bmay be any array whose items are appropriate to
function f. Ymay be any array whose items are appropriate to function f.

The derived function is equivalent to YfB. The derived function need not return a
result.

Examples
(*∘0.5)4 16 25

2 4 5

SQRT ← *∘.5

SQRT 4 16 25
2 4 5

The parentheses are required in order to distinguish between the operand B and the
argument Y.

Composition (Form IV) {R}←Xf∘gY

fmay be any dyadic function. gmay be any monadic function which returns a
result. Ymay be any array whose items are appropriate to function g. Also gYmust
return a result whose items are appropriate as the right argument of function f. X
may be any array whose items are appropriate to function f.

The derived function is equivalent to XfgY. The derived function need not return a
result.

Examples
+∘÷/40⍴1 ⍝ Golden Ratio! (Bob Smith)

1.618033989

0,∘⍳¨⍳5
0 1 0 1 2 0 1 2 3 0 1 2 3 4 0 1 2 3 4 5

Chapter 2: Primitive Operators 154

Each (with Monadic Operand) {R}←f¨Y

fmay be any monadic function. Ymay be any array, each of whose items are
separately appropriate to function f.

The derived function applies function f separately to each item of Y. The derived
function need not return a result. If a result is returned, R has the same shape as Y,
and its elements are the items produced by the application of function f to the
corresponding items of Y.

If Y is empty, the prototype of R is determined by applying the operand function once
to the prototype of Y.

Examples
G←('TOM' (⍳3))('DICK' (⍳4))('HARRY' (⍳5))
⍴G

3
⍴¨G

2 2 2

⍴¨¨G
3 3 4 4 5 5

+⎕FX¨('FOO1' 'A←1')('FOO2' 'A←2')
FOO1 FOO2

Chapter 2: Primitive Operators 155

Each (with Dyadic Operand) {R}←Xf¨Y

fmay be any dyadic function. X and Ymay be any arrays whose corresponding
items (after scalar extension) are appropriate to function f when applied separately.

The derived function is applied separately to each pair of corresponding elements of
X and Y. If X or Y is a scalar or single-element array, it will be extended to conform
with the other argument. The derived function need not produce an explicit result.
If a result is returned, R has the same shape as Y (after possible scalar extension)
whose elements are the items produced by the application of the derived function to
the corresponding items of X and Y.

If X or Y is empty, the operand function is applied once between the prototypes of X
and Y to determine the prototype of R.

Examples
+G←(1 (2 3))(4 (5 6))(8 9)10

1 2 3 4 5 6 8 9 10
1⌽¨G

2 3 1 5 6 4 9 8 10

1⌽¨¨G
1 3 2 4 6 5 8 9 10

1⌽¨¨¨G
1 2 3 4 5 6 8 9 10

1 2 3 4↑¨G
1 4 5 6 8 9 0 10 0 0 0

'ABC',¨'XYZ'
AX BY CZ

Chapter 2: Primitive Operators 156

I-Beam R←{X}(A⌶)Y

I-Beam is a monadic operator that provides a range of system related services.

WARNING:Although documentation is provided for I-Beam functions, any service
provided using I-Beam should be considered as "experimental" and subject to change
– without notice - from one release to the next. Any use of I-Beams in applications
should therefore be carefully isolated in cover-functions that can be adjusted if
necessary.

A is an integer that specifies the type of operation to be performed. Y is an array that
supplies further information about what is to be done.

Xmay or may not be required depending on A.

R is the result of the derived function.

For further information, see I-Beam on page 187.

Chapter 2: Primitive Operators 157

Inner Product R←Xf.gY

f and g are dyadic functions. The last axis of Xmust have the same length as the first
axis of Y, or one of X and Y is single (^/1=⍴X or ^/1=⍴Y).

The result of the derived function has shape (¯1↓⍴X),1↓⍴Y; each item is
f/x g¨y where x and y are vectors taken from all the combinations of vectors
along the last axis of X and the first axis of Y.

Notes:
l g must return a result.
l f must return a result with the possible exception of the case when
1=⍴x g¨y.

l The expression f/x g¨y applies even when R or x g¨y or X or Y is
empty. When X or Y is empty, the vector x is X reshaped to the appropriate
length (y is Y reshaped to appropriate length).

l x is just X itself if X is a scalar. Likewise y and Y.

Examples
1 2 3+.×10 12 14

76
+/1 2 3×10 12 14

76

NAMES
HENRY
WILLIAM
JAMES
SEBASTIAN

NAMES^.='WILLIAM '
0 1 0 0

Chapter 2: Primitive Operators 158

Key R←{X}f⌸Y

Classic Edition: the symbol ⌸ is not available in Classic Edition, and the Key
operator is instead represented by ⎕U2338.

fmay be any dyadic function that returns a result.

If X is specified, it is an array whose major cells specify keys for corresponding major
cells of Y. The Key operator ⌸ applies the function f to each unique key in X and the
major cells of Y having that key.

If X is omitted, Y is an array whose major cells represent keys. In this case, the Key
operator applies the function f to each unique key in Y and the elements of ⍳≢Y
having that key. f⌸Y is the same as Y f⌸⍳≢Y.

The elements of R appear in the order in which they first appear in Y.

Key is similar to the GROUP BY clause in SQL.

⎕CT and ⎕DCT are implicit arguments of the Key operator.

Example
cards←'2' 'Queen' 'Ace' '4' 'Jack'
suits←'Spades' 'Hearts' 'Spades' 'Clubs' 'Hearts'

suits,[1.5]cards
Spades 2
Hearts Queen
Spades Ace
Clubs 4
Hearts Jack

suits {⍺':'⍵}⌸ cards
Spades : 2 Ace
Hearts : Queen Jack
Clubs : 4

In this example, both arrays are vectors so their major cells are their elements. The
function {⍺':'⍵} is applied between the unique elements in suits ('Spades'
'Hearts' 'Clubs') and the elements in cards grouped according to their
corresponding elements in suits, i.e. ('2' 'Ace'), ('Queen' 'Jack') and
(,'4').

Chapter 2: Primitive Operators 159

Monadic Examples
{⍺ ⍵} ⌸ suits ⍝ indices of unique major cells

Spades 1 3
Hearts 2 5
Clubs 4

{⍺,≢⍵} ⌸ suits ⍝ count of unique major cells
Spades 2
Hearts 2
Clubs 1

letters←'zabayza'
{⍺(≢⍵)}⌸letters

z 2
a 3
b 1
y 1

Further Examples
x is a vector of stock codes, y is a corresponding matrix of values.

⍴x
10

⍴y
10 2

x,y
IBM 13 75
AAPL 45 53
GOOG 21 4
GOOG 67 67
AAPL 93 38
MSFT 51 83
IBM 3 5
AAPL 52 67
AAPL 0 38
IBM 6 41

If we apply the function {⍺ ⍵} to x and y using the ⌸ operator, we can see how the
rows (its major cells) of y are grouped according to the corresponding elements (its
major cells) of x.

Chapter 2: Primitive Operators 160

x{⍺ ⍵}⌸y
IBM 13 75

3 5
6 41

AAPL 45 53
93 38
52 67
0 38

GOOG 21 4
67 67

MSFT 51 83

More usefully, we can apply the function {⍺(+⌿⍵)}, which delivers the stock codes
and the corresponding totals in y:

x{⍺(+⌿⍵)}⌸y
IBM 22 121
AAPL 190 196
GOOG 88 71
MSFT 51 83

There is no need for the function to use its left argument. So to obtain just the totals
in y grouped by the stock codes in x:

x{+⌿⍵}⌸y
22 121

190 196
88 71
51 83

Defined Function Example
This example appends the data for a stock into a component file named by the
symbol.

∇ r←stock foo data;fid;file
[1] file←⊃stock
[2] :Trap 0
[3] fid←file ⎕FTIE 0
[4] file ⎕FERASE fid
[5] :EndTrap
[6] fid←file ⎕FCREATE 0
[7] r←data ⎕FAPPEND fid
[8] ⎕FUNTIE fid

∇

x foo⌸y
1 1 1 1

Chapter 2: Primitive Operators 161

Example
{⍺ ⍵} ⌸ suits ⍝ indices of unique major cells

Spades 1 3
Hearts 2 5
Clubs 4

{⍺,≢⍵} ⌸ suits ⍝ count of unique major cells
Spades 2
Hearts 2
Clubs 1

Another Example
Given a list of names and scores., the problem is to sum the scores for each unique
name. A solution is presented first without using the Key operator, and then with the
Key operator.

names ⍝ 12, some repeat
Pete Jay Bob Pete Pete Jay Jim Pete Pete Jim
Pete Pete

(∪names)∘.≡names
1 0 0 1 1 0 0 1 1 0 1 1
0 1 0 0 0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 1 0 0

scores
66 75 71 100 22 10 67 77 55 42 1 78

b←↓(∪names)∘.≡names
]disp b/¨⊂⍳12

┌→──────────────┬───┬─┬────┐
│1 4 5 8 9 11 12│2 6│3│7 10│
└~─────────────→┴~─→┴→┴~──→┘

+/¨b/¨⊂scores
399 85 71 109

]disp {⊂⍵}⌸ names
┌→──────────────┬───┬─┬────┐
│1 4 5 8 9 11 12│2 6│3│7 10│
└~─────────────→┴~─→┴→┴~──→┘

names {+/⍵}⌸ scores
399 85 71 109

Chapter 2: Primitive Operators 162

Outer Product {R}←X∘.gY

gmay be any dyadic function. The left operand of the operator is the symbol ∘. X
and Ymay be any arrays whose elements are appropriate to the function g.

Function g is applied to all combinations of the elements of X and Y. If function g
returns a result, the shape of R is (⍴X),⍴Y. Each element of R is the item returned
by function g when applied to the particular combination of elements of X and Y.

Examples
1 2 3∘.×10 20 30 40

10 20 30 40
20 40 60 80
30 60 90 120

1 2 3∘.⍴'AB'
A B
AA BB
AAA BBB

1 2∘.,1 2 3
1 1 1 2 1 3
2 1 2 2 2 3

(⍳3)∘.=⍳3
1 0 0
0 1 0
0 0 1

If X or Y is empty, the result R is a conformable empty array, and the operand function
is applied once between the first items of X and Y to determine the prototype of R.

Chapter 2: Primitive Operators 163

Power Operator {R}←{X}(f⍣g)Y

If right operand g is a numeric integer scalar, power applies its left operand function
f cumulatively g times to its argument. In particular, gmay be Boolean 0 or 1 for
conditional function application.

If right operand g is a scalar-returning dyadic function, then left operand function f
is applied repeatedly until ((f Y) g Y) or until a strong interrupt occurs. Notice
that power calls its dyadic right operand g with the next (f Y) and current (Y)
values of the iteration as left and right arguments. In particular, if g is = or ≡, the
result is sometimes termed a fixpoint of f.

If a left argument X is present, it is bound as left argument to left operand function f:

X (f ⍣ g) Y → (X∘f ⍣ g) Y

A negative right operand g applies the inverse of the operand function f,
(|g)times. In this case, fmay be a primitive function or an expression of primitive
functions combined with primitive operators:

∘ compose

¨ each

∘. outer product

⍨ commute

\ scan

[] axis

⍣ power

If the function does not have an inverse, a negative argument g generates DOMAIN
ERROR.

Examples

(,∘⊂∘,⍣(1=≡,vec))vec ⍝ ravel-enclose if simple.

a b c←1 0 1{(⊂⍣⍺)⍵}¨abc ⍝ enclose first and last.

cap←{(⍺⍺⍣⍺)⍵} ⍝ conditional application.

a b c←1 0 1⊂cap¨abc ⍝ enclose first and last.

Chapter 2: Primitive Operators 164

succ←1∘+ ⍝ successor function.

(succ⍣4)10 ⍝ fourth successor of 10.
14

(succ⍣¯3)10 ⍝ third predecessor of 10.
7

1+∘÷⍣=1 ⍝ fixpoint: golden mean.
1.618033989

f←(32∘+)∘(×∘1.8) ⍝ Fahrenheit from Celsius.
f 0 100

32 212

c←f⍣¯1 ⍝ c is Inverse of f.
c 32 212 ⍝ Celsius from Fahrenheit.

0 100

invs←{(⍺⍺⍣¯1)⍵} ⍝ inverse operator.

+\invs 1 3 6 10 ⍝ scan inverse.
1 2 3 4

2∘⊥invs 9 ⍝ decode inverse.
1 0 0 1

dual←{⍵⍵⍣¯1 ⍺⍺ ⍵⍵ ⍵} ⍝ dual operator.

mean←{(+/⍵)÷⍴⍵} ⍝ mean function.

mean dual⍟ 1 2 3 4 5 ⍝ geometric mean.
2.605171085

+/dual÷ 1 2 3 4 5 ⍝ parallel resistance.
0.4379562044

mean dual(×⍨)1 2 3 4 5 ⍝ root-mean-square.
3.31662479

⍉dual↑ 'hello' 'world' ⍝ vector transpose.
hw eo lr ll od

Chapter 2: Primitive Operators 165

Warning
Some expressions, such as the following, will cause an infinite internal loop and APL
will appear to hang. In most cases this can be resolved by issuing a hard
INTERRUPT.

!⍣-1
!⍣-2

One can ensure that weak interrupts and ⎕TKILL can interrupt by packaging the ⍣
within the dop {⍺←⊢ ⋄ ⍺ (⍺⍺{⍺←⊢ ⋄ ⍺ ⍺⍺ ⍵}⍣⍵⍵) ⍵}.

Example
PowOp←{⍺←⊢ ⋄ ⍺ (⍺⍺{⍺←⊢ ⋄ ⍺ ⍺⍺ ⍵}⍣⍵⍵) ⍵}
tnum←!PowOp-&1 ⍝ using naked ⍣ will freeze APL

⎕tkill tnum

Chapter 2: Primitive Operators 166

Rank R←{X}(f⍤B)Y

Classic Edition: the symbol ⍤ is not available in Classic Edition, and the Rank
operator is instead represented by ⎕U2364.

The Rank operator ⍤ applies monadic function f successively to sub-arrays of Y, or
dyadic function f between sub-arrays of X and Y. Sub-arrays are selected by right
operand B.

B is a numeric scalar or vector of up to three items, specifying the ranks of the cells to
which f should be applied. The most general form is a three item vector p q r,
where:

l p specifies the rank of the argument cells when f is applied monadically
l q specifies the rank of the left argument cells when f is applied dyadically
l r specifies the rank of the right argument cells when f is applied dyadically

If B is a two item vector q r, it is implicitly extended to r q r. If B has a single
item r, it is implicitly extended to r r r.

If an item k of B is zero or positive it selects k-cells of the corresponding argument. If
it is negative, it selects (r+k)-cells where r is the rank of the corresponding argument.
A value of ¯1 selects major cells. For further information, see Programming
Reference Guide: Cells and Subarrays.

If X is omitted, fmay be any monadic function that returns a result. Ymay be any
array. The Rank operator ⍤ applies function f successively to the sub-arrays in Y
specified by p (i.e. the first item of B, as specified or implicitly extended).

If X is specified, it may be any array and fmay be any dyadic function that returns a
result. Ymay be any array. In this case, the Rank operator applies function f
successively between the sub-arrays in X specified by q and the sub-arrays in Y
specified by r.

The sub-arrays of R are the results of the individual applications of f. If these results
differ in rank or shape, they are extended to a common rank and shape in the manner
of Mix. SeeMix on page 96.

Notice that it is necessary to prevent the right operand k binding to the right
argument. This can be done using parentheses e.g. (f⍤1)Y. The same can be
achieved using ⊢ e.g. f⍤1⊢Y because ⍤ binds tighter to its right operand than ⊢ does
to its left argument, and ⊢ therefore resolves to Identity.

Chapter 2: Primitive Operators 167

Monadic Examples
Using enclose (⊂) as the left operand elucidates the workings of the rank operator.

Y
36 99 20 5
63 50 26 10
64 90 68 98

66 72 27 74
44 1 46 62
48 9 81 22

⍴Y
2 3 4

⊂⍤2 ⊢Y
┌───────────┬───────────┐
│36 99 20 5│66 72 27 74│
│63 50 26 10│44 1 46 62│
│64 90 68 98│48 9 81 22│
└───────────┴───────────┘

⊂⍤1 ⊢Y
┌───────────┬───────────┬───────────┐
│36 99 20 5 │63 50 26 10│64 90 68 98│
├───────────┼───────────┼───────────┤
│66 72 27 74│44 1 46 62 │48 9 81 22 │
└───────────┴───────────┴───────────┘

The function {(⊂⍋⍵)⌷⍵} sorts a vector.

{(⊂⍋⍵)⌷⍵} 3 1 4 1 5 9 2 6 5
1 1 2 3 4 5 5 6 9

The rank operator can be used to apply the function to sub-arrays; in this case to sort
the 1-cells (rows) of a 3-dimensional array.

Y
36 99 20 5
63 50 26 10
64 90 68 98

66 72 27 74
44 1 46 62
48 9 81 22

({(⊂⍋⍵)⌷⍵}⍤1)Y
5 20 36 99

10 26 50 63
64 68 90 98

27 66 72 74
1 44 46 62
9 22 48 81

Chapter 2: Primitive Operators 168

Dyadic Examples
10 20 30 (+⍤0 1)3 4⍴⍳12

10 11 12 13
24 25 26 27
38 39 40 41

Using the function {⍺ ⍵} as the left operand demonstrates how the dyadic case of
the rank operator works.

10 20 30 ({⍺ ⍵}⍤0 1)3 4⍴⍳12
┌──┬─────────┐
│10│0 1 2 3 │
├──┼─────────┤
│20│4 5 6 7 │
├──┼─────────┤
│30│8 9 10 11│
└──┴─────────┘

Note that a right operand of ¯1 applies the function between the major cells (in this
case elements) of the left argument, and the major cells (in this case rows) of the right
argument.

10 20 30 ({⍺ ⍵}⍤¯1)3 4⍴⍳12
┌──┬─────────┐
│10│0 1 2 3 │
├──┼─────────┤
│20│4 5 6 7 │
├──┼─────────┤
│30│8 9 10 11│
└──┴─────────┘

Chapter 2: Primitive Operators 169

Reduce R←f/[K]Y

fmust be a dyadic function. Ymay be any array whose items in the sub-arrays along
the Kth axis are appropriate to function f.

The axis specification is optional. If present, Kmust identify an axis of Y. If absent,
the last axis of Y is implied. The form R←f⌿Y implies the first axis of Y.

R is an array formed by applying function f between items of the vectors along the
Kth (or implied) axis of Y. For a typical vector Y, the result R is:

R ←→ ⊂(1⊃Y)f(2⊃Y)f......f(n⊃Y)

The shape S of R is the shape of Y excluding the Kth axis, i.e.

S ←→ ⍴R ←→ (K≠⍳⍴⍴Y)/⍴Y

If Y is a scalar then for any function f, R is Y.

If the length of the Kth axis of Y is 1, or if the length of any other axis of Y is 0, then f
is not applied and R is S⍴Y.

Otherwise, if the length of the Kth axis is 0 then the result depends on f and on ⊃Y
(the prototypical item of Y) as follows:

If f is one of the functions listed in Table 12 then R is S⍴⊂I, where I
is formed from ⊃Y by replacing each depth-zero item of ⊃Y with the
identity element from the table.

Otherwise if f is Catenate, R is S⍴⊂0/⊃Y. If f is Catenate First, R is
S⍴⊂0⌿⊃Y. If f is Catenate along the Jth axis, R is S⍴⊂0/[J]⊃Y. See
Catenate/Laminate on page 26.

Otherwise, DOMAIN ERROR is reported.

Chapter 2: Primitive Operators 170

Table 12: Identity Elements
Function Identity

Add + 0

Subtract - 0

Multiply × 1

Divide ÷ 1

Residue | 0

Minimum ⌊ M1

Maximum ⌈ -M

Power * 1

Binomial ! 1

And ∧ 1

Or ∨ 0

Less < 0

Less or Equal ≤ 1

Equal = 1

Greater > 0

Greater or Equal ≥ 1

Not Equal ≠ 0

Encode ⊤ 0

Union ∪ ⍬

Replicate /⌿ 1

Expand \⍀ 1

Rotate ⌽⊖ 0

1M represents the largest representable value: typically this is 1.7E308, unless ⎕FR is 1287, when
the value is 1E6145.

Chapter 2: Primitive Operators 171

Examples
∨/0 0 1 0 0 1 0

1
MAT

1 2 3
4 5 6

+/MAT
6 15

+⌿MAT
5 7 9

+/[1]MAT
5 7 9

+/(1 2 3)(4 5 6)(7 8 9)
12 15 18

,/'ONE' 'NESS'
ONENESS

+/⍳0
0

(⊂⍬)≡,/⍬
1

(⊂'')≡,/0⍴'Hello' 'World'
1

(⊂0 3 4⍴0)≡⍪/0⍴⊂2 3 4⍴0
1

Reduce First R←f⌿Y

The form R←f⌿Y implies reduction along the first axis of Y. See Reduce above.

Chapter 2: Primitive Operators 172

Reduce N-Wise R←Xf/[K]Y

fmust be a dyadic function. Xmust be a simple scalar or one-item integer array. Y
may be any array whose sub-arrays along the Kth axis are appropriate to function f.

The axis specification is optional. If present, Kmust identify an axis of Y. If absent,
the last axis of Y is implied. The form R←Xf⌿Y implies the first axis of Y.

R is an array formed by applying function f between items of sub-vectors of length X
taken from vectors along the Kth (or implied) axis of Y.

X can be thought of as the width of a "window" which moves along vectors drawn
from the Kth axis of Y.

If X is zero, the result is a (⍴Y)+(-⍴⍴Y)↑1 array of identity elements for the
function f. See Identity Elements on page 170.

If X is negative, each sub-vector is reversed before being reduced.

Examples
⍳4

1 2 3 4

3+/⍳4⍝ (1+2+3) (2+3+4)
6 9

2+/⍳4⍝ (1+2) (2+3) (3+4)
3 5 7

1+/⍳4⍝ (1) (2) (3) (4)
1 2 3 4

0+/⍳4⍝ Identity element for +
0 0 0 0 0

0×/⍳4⍝ Identity element for ×
1 1 1 1 1

2,/⍳4⍝ (1,2) (2,3) (3,4)
1 2 2 3 3 4

¯2,/⍳4⍝ (2,1) (3,2) (4,3)
2 1 3 2 4 3

Reduce First N-Wise R←Xf⌿[K]Y

The form R←Xf⌿Y implies N-Wise reduction along the first axis of Y. See Reduce N-
Wise above.

Chapter 2: Primitive Operators 173

Scan R←f\[K]Y

fmay be any dyadic function that returns a result. Ymay be any array whose items
in the sub-arrays along the Kth axis are appropriate to the function f.

The axis specification is optional. If present, Kmust identify an axis of Y. If absent,
the last axis of Y is implied. The form R←f⍀Y implies the first axis of Y.

R is an array formed by successive reductions along the Kth axis of Y. If V is a typical
vector taken from the Kth axis of Y, then the Ith element of the result is determined as
f/I↑V.

The shape of R is the same as the shape of Y. If Y is an empty array, then R is the same
empty array.

Examples
∨\0 0 1 0 0 1 0

0 0 1 1 1 1 1

^\1 1 1 0 1 1 1
1 1 1 0 0 0 0

+\1 2 3 4 5
1 3 6 10 15

+\(1 2 3)(4 5 6)(7 8 9)
1 2 3 5 7 9 12 15 18

Chapter 2: Primitive Operators 174

M
1 2 3
4 5 6

+\M
1 3 6
4 9 15

+⍀M
1 2 3
5 7 9

+\[1]M
1 2 3
5 7 9

,\'ABC'
A AB ABC

T←'ONE(TWO) BOOK(S)'

≠\T∊'()'
0 0 0 1 1 1 1 0 0 0 0 0 0 1 1 0

((T∊'()')⍱≠\T∊'()')/T
ONE BOOK

Scan First R←f⍀Y

The form R←f⍀Y implies scan along the first axis of Y. See Scan above.

Chapter 2: Primitive Operators 175

Spawn {R}←{X}f&Y

& is a monadic operator with an ambivalent derived function. & spawns a new thread
in which f is applied to its argument Y (monadic case) or between its arguments X
and Y (dyadic case). The shy result of this application is the number of the newly
created thread.

When function f terminates, its result (if any), the thread result, is returned. If the
thread number is the subject of an active ⎕TSYNC, the thread result appears as the
result of ⎕TSYNC. If no ⎕TSYNC is in effect, the thread result is displayed in the
session in the normal fashion.

Note that & can be used in conjunction with the each operator ¨ to launch many
threads in parallel.

Examples
÷&4 ⍝ Reciprocal in background

0.25

⎕←÷&4 ⍝ Show thread number
1
0.25

FOO&88 ⍝ Spawn monadic function.

2 FOO&3 ⍝ dyadic

{NIL}&0 ⍝ niladic

⍎&'NIL' ⍝ ..

X.GOO&99 ⍝ thread in remote space.

⍎&'⎕dl 2' ⍝ Execute async expression.

'NS'⍎&'FOO' ⍝ .. remote

PRT&¨↓⎕nl 9 ⍝ PRT spaces in parallel.

Chapter 2: Primitive Operators 176

Stencil R←(f⌺g)Y

Classic Edition: the symbol ⌺ is not available in Classic Edition, and the Stencil
operator is instead represented by ⎕U233a.

Stencil is used in image processing, artificial neural networks, computational fluid
dynamics, cellular automata, and many other fields of application. The computation
is sometimes referred to as tessellation, moving window, or stencil code1. This
operator applies the left operand function f to a series of (possibly overlapping)
rectangles in the array Y.

In general, the right operand g is a 2- row matrix of positive non-zero integers with
up to ⍴⍴Y columns. The first row contains the rectangle sizes, the second row the
movements i.e. how much to move the rectangle in each step. If g is a scalar or vector
it specifies the rectangle size and the movement defaults to 1.

The predominant case uses a rectangle size which is odd and a movement of 1.

Rectangles are centred on successive elements of Y and (unless the rectangle size is
1), padded with fill elements.

The first rectangle is centred on the first element of Y preceded by the appropriate
number of fill elements. Subsequent rectangles are centred on subsequent elements of
Y according to the size of the movement, and padded before or after as appropriate.
When the movement is 1, each element of Y in its turn is the middle of a rectangle.

f is invoked dyadically with a vector left argument indicating for each axis the
number of fill elements and on what side; positive values mean that the padding
precedes the array values, negative values mean that the padding follows the array
values.

1See https://en.wikipedia.org/wiki/Stencil_code

Chapter 2: Primitive Operators 177

Example
{⊂⍺ ⍵}⌺3 3⊢3 3⍴⍳12

┌────────────┬────────────┬─────────────┐
│┌───┬─────┐ │┌───┬─────┐ │┌────┬─────┐ │
││1 1│0 0 0│ ││1 0│0 0 0│ ││1 ¯1│0 0 0│ │
││ │0 1 2│ ││ │1 2 3│ ││ │2 3 0│ │
││ │0 4 5│ ││ │4 5 6│ ││ │5 6 0│ │
│└───┴─────┘ │└───┴─────┘ │└────┴─────┘ │
├────────────┼────────────┼─────────────┤
│┌───┬─────┐ │┌───┬─────┐ │┌────┬─────┐ │
││0 1│0 1 2│ ││0 0│1 2 3│ ││0 ¯1│2 3 0│ │
││ │0 4 5│ ││ │4 5 6│ ││ │5 6 0│ │
││ │0 7 8│ ││ │7 8 9│ ││ │8 9 0│ │
│└───┴─────┘ │└───┴─────┘ │└────┴─────┘ │
├────────────┼────────────┼─────────────┤
│┌────┬─────┐│┌────┬─────┐│┌─────┬─────┐│
││¯1 1│0 4 5│││¯1 0│4 5 6│││¯1 ¯1│5 6 0││
││ │0 7 8│││ │7 8 9│││ │8 9 0││
││ │0 0 0│││ │0 0 0│││ │0 0 0││
│└────┴─────┘│└────┴─────┘│└─────┴─────┘│
└────────────┴────────────┴─────────────┘

{+/,⍵}⌺3 3⊢3 3⍴⍳12
12 21 16
27 45 33
24 39 28

In the first expression above, the left operand function {⊂⍺ ⍵} simply displays its
left and right arguments to illustrate the mechanics of the operation. The right
operand (3 3) specifies that each rectangle contains 3 rows and 3 columns, and the
movement is 1.

In order for the first element of Y (1) to be centred, the first rectangle is padded with a
row above and a column to the left, as indicated by the left argument (1 1) to the
function.

Another way to think about the way Stencil operates is that it portions the array into
sections or neighbourhoods in which elements can be analysed with respect to their
immediate neighbours. Stencil has uses in image processing applications.

Chapter 2: Primitive Operators 178

Examples
{⊂⍺ ⍵}⌺(3 3,[.5]2)⊢3 3⍴⍳12

┌────────────┬─────────────┐
│┌───┬─────┐ │┌────┬─────┐ │
││1 1│0 0 0│ ││1 ¯1│0 0 0│ │
││ │0 1 2│ ││ │2 3 0│ │
││ │0 4 5│ ││ │5 6 0│ │
│└───┴─────┘ │└────┴─────┘ │
├────────────┼─────────────┤
│┌────┬─────┐│┌─────┬─────┐│
││¯1 1│0 4 5│││¯1 ¯1│5 6 0││
││ │0 7 8│││ │8 9 0││
││ │0 0 0│││ │0 0 0││
│└────┴─────┘│└─────┴─────┘│
└────────────┴─────────────┘

{⊂⍺ ⍵}⌺(3 3,[.5]3)⊢3 3⍴⍳12
┌───────────┐
│┌───┬─────┐│
││1 1│0 0 0││
││ │0 1 2││
││ │0 4 5││
│└───┴─────┘│
└───────────┘

Chapter 2: Primitive Operators 179

⊢ A←5 5⍴0 0 1 0 0, 0 1 2 1 0, 1 2 3 2 1, 0 1 2 1 0
0 0 1 0 0
0 1 2 1 0
1 2 3 2 1
0 1 2 1 0
0 0 1 0 0

⊢ y←1=?10 10⍴4
0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 1 0 0 0 0
1 0 0 0 1 1 0 0 0 1
1 1 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0
1 0 1 0 0 1 1 0 0 1
0 0 0 0 0 0 1 1 0 0
0 0 0 0 0 0 0 0 0 0
1 0 0 0 1 1 0 1 1 0

{+/,A×⍵}⌺(⍴A) ⊢y
0 0 1 0 0 1 0 1 2 3
1 1 2 1 2 3 1 0 1 3
4 4 3 4 6 6 3 1 1 3
6 6 5 4 7 7 4 2 2 3
8 6 5 3 5 6 2 0 1 3
6 5 4 3 5 6 5 2 1 3
5 5 4 4 6 7 8 7 4 3
3 2 2 1 4 7 8 7 5 3
3 1 1 1 3 5 6 6 4 2
3 2 2 3 5 6 7 7 5 3

You can see that the result identifies where there are clusters in y.

Chapter 2: Primitive Operators 180

Examples (odd rectangle, movement not 1)
If the movement is greater than one, corresponding portions are skipped as shown
below.

{⊂⍵}⌺(⍪3 2) ⍳8
┌─────┬─────┬─────┬─────┐
│0 1 2│2 3 4│4 5 6│6 7 8│
└─────┴─────┴─────┴─────┘

{(¯2↑⍕⍺),' f ',⍕⍵}⌺(⍪3 2) ⍳8
1 f 0 1 2
0 f 2 3 4
0 f 4 5 6
0 f 6 7 8

⍝ ↑ middle

{⊂⍵}⌺(⍪5 2) ⍳9
┌─────────┬─────────┬─────────┬─────────┬─────────┐
│0 0 1 2 3│1 2 3 4 5│3 4 5 6 7│5 6 7 8 9│7 8 9 0 0│
└─────────┴─────────┴─────────┴─────────┴─────────┘

{(¯2↑⍕⍺),' f ',⍕⍵}⌺(⍪5 2) ⍳9
2 f 0 0 1 2 3
0 f 1 2 3 4 5
0 f 3 4 5 6 7
0 f 5 6 7 8 9

¯2 f 7 8 9 0 0
⍝ ↑ middle

Chapter 2: Primitive Operators 181

Even Rectangle Size
For even rectangle sizes, the "middle" consists of two elements which are moved
according to the movement parameter (equal to 1 in these examples).

Examples
⎕←s←{⊂⍵}⌺ 2 ⍳8

┌───┬───┬───┬───┬───┬───┬───┐
│1 2│2 3│3 4│4 5│5 6│6 7│7 8│
└───┴───┴───┴───┴───┴───┴───┘

{(¯2↑⍕⍺),' f ',⍕⍵}⌺ 2⍳8
0 f 1 2
0 f 2 3
0 f 3 4
0 f 4 5
0 f 5 6
0 f 6 7
0 f 7 8

⍝ ↑ ↑ middle

⎕←s←{⊂⍵}⌺ 4⍳8
┌───────┬───────┬───────┬───────┬───────┬───────┬───────┐
│0 1 2 3│1 2 3 4│2 3 4 5│3 4 5 6│4 5 6 7│5 6 7 8│6 7 8 0│
└───────┴───────┴───────┴───────┴───────┴───────┴───────┘

⍴s
7

{(¯2↑⍕⍺),' f ',⍕⍵}⌺ 4⍳8
1 f 0 1 2 3
0 f 1 2 3 4
0 f 2 3 4 5
0 f 3 4 5 6
0 f 4 5 6 7
0 f 5 6 7 8

¯1 f 6 7 8 0
⍝ ↑ ↑ middle

Chapter 2: Primitive Operators 182

Examples (even rectangle, movement not 1)
{⊂⍵}⌺(⍪4 2) ⍳8

┌───────┬───────┬───────┬───────┐
│0 1 2 3│2 3 4 5│4 5 6 7│6 7 8 0│
└───────┴───────┴───────┴───────┘

{(¯2↑⍕⍺),' f ',⍕⍵}⌺(⍪4 2) ⍳8
1 f 0 1 2 3
0 f 2 3 4 5
0 f 4 5 6 7

¯1 f 6 7 8 0
⍝ ↑ ↑ middle

{⊂⍵}⌺(⍪6 2) ⍳8
┌───────────┬───────────┬───────────┬───────────┐
│0 0 1 2 3 4│1 2 3 4 5 6│3 4 5 6 7 8│5 6 7 8 0 0│
└───────────┴───────────┴───────────┴───────────┘

{(⍕⍺),' f ',⍕⍵}⌺(⍪6 2) ⍳8
2 f 0 0 1 2 3 4
0 f 1 2 3 4 5 6
0 f 3 4 5 6 7 8
¯2 f 5 6 7 8 0 0
⍝ ↑ ↑ middle

Chapter 2: Primitive Operators 183

Variant {R}←{X}(f⍠B)Y

Classic Edition: the symbol ⍠ is not available in Classic Edition, and the Variant
operator is instead represented by ⎕U2360. Note too that ⍠ and ⎕OPT are
synonymous though only the latter is available in the Classic Edition.

The Variant operator ⍠ specifies the value of an option to be used by its left operand
function f. An option is a named property of a function whose value in some way
affects the operation of that function.

For example, the Search and Replace operators include options named IC and Mode
which respectively determine whether or not case is ignored and in what manner the
input document is processed.

One of the set of options may be designated as the Principal option whose value may
be set using a short-cut form of syntax as described below. For example, the Principal
option for the Search and Replace operators is IC.

For the operand function with right argument Y and optional left argument X, the
right operand B specifies the values of one or more options that are applicable to that
function. If B is empty, function f is called with default options. Otherwise, Bmay
be a scalar, a 2-element vector, or a vector of 2-element vectors which specifies
values for one or more options as follows:

l If B is a 2-element vector and the first element is a character vector, it
specifies an option name in the first element and the option value (which
may be any suitable array) in the second element.

l If B is a vector of 2-element vectors, each item of B is interpreted as above.
l If B is a scalar (a rank-0 array of any depth), it specifies the value of the
Principal option,

Option names and their values must be appropriate for the left operand function,
otherwise DOMAIN ERROR (error code 11) will be reported.

Example
tn←'Dick'(⎕FCREATE⍠'Z' 1)0

Chapter 2: Primitive Operators 184

The following illustrations and examples apply to functions derived from the Search
and Replace operators.

Examples of operand B
The following expression sets the IC option to 1, the Mode option to 'D' and the
EOL option to 'LF'.

⍠('Mode' 'D')('IC' 1)('EOL' 'LF')

The following expression sets just the EOL property to 'CR'.

⍠'EOL' 'CR'

The following expression sets just the Principal option (which for the Search and
Replace operators is IC) to 1.

⍠ 1

The order in which options are specified is typically irrelevant but if the same option
is specified more than once, the rightmost one dominates. The following expression
sets the option IC to 1:

⍠('IC' 0) ('IC' 1)

The Variant operator generates a derived function f⍠B and may be assigned to a
name. The derived function is effectively function f bound with the option values
specified by B.

The derived function may itself be used as a left operand to Variant to produce a
second derived function whose options are further modified by the second
application of the operator. The following sets the same options as the first example
above:

⍠'Mode' 'D'⍠'IC' 1⍠'EOL' 'LF'

When the same option is specified more than once in this way, the outermost
(rightmost) one dominates. The following expression also sets the option IC to 1:

⍠'IC' 0⍠'IC' 1

Chapter 2: Primitive Operators 185

Further Examples
The following derived function returns the location of the word 'variant' within
its right argument using default values for all the options.

f1 ← 'variant' ⎕S 0
f1 'The variant Variant operator'

4

It may be modified to perform a case-insensitive search:

(f1 ⍠ 1) 'The variant Variant operator'
4 12

This modified function may be named:

f2 ← f1 ⍠ 1
f2 'The variant Variant operator'

4 12

The modified function may itself be modified, in this case to revert to a case sensitive
search:

f3 ← f2 ⍠ 0
f3 'The variant Variant operator'

4

This is equivalent to:

(f1 ⍠ 1 ⍠ 0) 'The variant Variant operator'
4

Variant and .NET
The Variant operator may also be used in conjunction with .NET classes; it can used
to cast an array into a specific .NET data type, and to specify which constructor
should be used when creating a new instance of a .NET class which has overloaded
constructors. For further information, see .NET Interface Guide: Advanced
Techniques.

Chapter 2: Primitive Operators 186

Chapter 3: The I-Beam Operator 187

Chapter 3:

The I-Beam Operator

I-Beam R←{X}(A⌶)Y

I-Beam is a monadic operator that provides a range of system related services.

WARNING:Although documentation is provided for I-Beam functions, any service
provided using I-Beam should be considered as "experimental" and subject to change
– without notice - from one release to the next. Any use of I-Beams in applications
should therefore be carefully isolated in cover-functions that can be adjusted if
necessary. See also: Other I-Beams on page 258.

A is an integer that specifies the type of operation to be performed as shown in the
table below. Y is an array that supplies further information about what is to be done.

Xmay or may not be required depending on A.

R is the result of the derived function.

When attempting to use I-Beamwith an unsupported operation value, A, one of three
different error messages will be reported:

l Invalid I-Beam function selection
l I-Beam function xxx has been withdrawn
l I-Beam function xxx is not supported by this interpreter

This allows the user to distinguish between operation values that have never been
used, those that have been used in earlier versions but are no longer included in the
current version, and those that are valid in other editions or on other platforms other
than the current interpreter.

The column labelled O/S indicates if a function applies only on Windows (W) or
only on non-Windows (X) platforms.

Chapter 3: The I-Beam Operator 188

A Derived Function O/S

8 Inverted Table Index-of

85 Execute Expression

127 Overwrite Free Pockets

180 Canonical Representation

181 Unsqueezed Type

200 Syntax Colouring

201 Syntax Colour Tokens

219 Compress/Decompress Vector of Short Integers

220 Serialise/Deserialise Array

400 Compiler Control

600 Trap Control

739 Temporary Directory

819 Case Convert

900 Called Monadically

950 Loaded Libraries

1111 Number of Threads

1112 Parallel Execution Threshold

1159 Update Function Time and User Stamp

1500 Hash Array

2000 Memory Manager Statistics

2002 Specify Workspace Available

2010 Update DataTable W

2011 Read DataTable W

2014 Remove Data Binding W

2015 Create Data Binding Source W

2016 Create .NET Delegate W

2017 Identify .NET Type W

Chapter 3: The I-Beam Operator 189

A Derived Function O/S

2022 Flush Session Caption W

2023 Close all Windows

2035 Set Dyalog Pixel Type W

2041 Override COM Default Value W

2100 Export to Memory W

2101 Close .NET AppDomain W

2400 Set Workspace Save Options

2401 Expose Root Properties

2501 Discard thread on exit W

2502 Discard parked threads W

2503 Mark Thread as Uninterruptible

2520 Use Separate Thread For .NET

2704 Continue Autosave

3002 Disable Component Checksum Validation

3500 Send Text to RIDE-embedded Browser

3501 Connected to the RIDE

3502 Manage RIDE Connections

4000 Fork New Task X

4001 Change User X

4002 Reap Forked Tasks X

4007 Signal Counts X

5176 List Loaded Files

5177 List Loaded File Objects

5178 Remove Loaded File Object Info

5179 Loaded File Object Info

7162 JSON Translate Name

8415 Singular Value Decomposition

50100 Line Count

Chapter 3: The I-Beam Operator 190

Inverted Table Index Of R←X(8⌶)Y

This function computes X index-of Y (viz. X⍳Y) where X and Y are compatible
inverted tables. R is the indices of Y in X.

An inverted table is a (nested) vector all of whose items have the same number of
major cells. That is, 1=⍴⍴⍵ and (≢⊃⍵)=≢¨⍵. An inverted table representation of
relational data is more efficient in time and space than other representations.

The following is an example of an inverted table:

X←(10 3⍴⎕a) (⍳10) 'metalepsis'
X

┌───┬───────────────────┬──────────┐
│ABC│0 1 2 3 4 5 6 7 8 9│metalepsis│
│DEF│ │ │
│GHI│ │ │
│JKL│ │ │
│MNO│ │ │
│PQR│ │ │
│STU│ │ │
│VWX│ │ │
│YZA│ │ │
│BCD│ │ │
└───┴───────────────────┴──────────┘

Using inverted tables, it is often necessary to perform a table look-up to find the
"row" indices of one in another. Suppose there is a second table Y:

Y←(⊂⊂3 1 4 1 5 9)⌷¨X
Y

GHI 3 1 4 1 5 9 tmamli
ABC
JKL
ABC
MNO
YZA

To compute the indices of Y in X using dyadic ⍳, it is necessary to first un-invert each
of the tables in order to create nested matrices that ⍳ can handle.

Chapter 3: The I-Beam Operator 191

unvert ← {⍉↑⊂⍤¯1¨⍵}
unvert X

┌───┬─┬─┐
│ABC│0│m│
├───┼─┼─┤
│DEF│1│e│
├───┼─┼─┤
│GHI│2│t│
├───┼─┼─┤
│JKL│3│a│
├───┼─┼─┤
│MNO│4│l│
├───┼─┼─┤
│PQR│5│e│
├───┼─┼─┤
│STU│6│p│
├───┼─┼─┤
│VWX│7│s│
├───┼─┼─┤
│YZA│8│i│
├───┼─┼─┤
│BCD│9│s│
└───┴─┴─┘

(unvert X) ⍳ (unvert Y)
3 1 4 1 5 9

Each un-inverted table requires considerably more workspace than its inverted form,
so if the inverted tables are large, this operation is potentially expensive in terms of
both time and workspace.

8⌶ is an optimised version of the above expression.

X (8⌶) Y
3 1 4 1 5 9

Chapter 3: The I-Beam Operator 192

Execute Expression R←X(85⌶)Y

Executes an expression.

Y is a character vector containing an APL expression.

The function executes the expression in Y exactly as it would be executed by the
monadic Execute primitive function ⍎, but handles shy results of the execution rather
differently.

The left argument X determines how a shy result from the execution of Y is treated
and is either 0 or 1.

If X is 1, and the expression in Y returns an explicit result, R is that result. If the
expression in Y returns no result or returns a shy result, the function signals ERROR
85. Effectively, a shy result is discarded.

If X is 0, and the expression in Y returns an explicit result or a shy result, R is that
result (but is no longer shy). If the expression in Y returns no result, the function
signals ERROR 85.

Examples
⍎'a←42'
⎕← ⍎'a←42' ⍝ shy result

42
0 (85⌶) 'a←42' ⍝ not shy

42
1 (85⌶) 'a←42'

ERROR 85
1(85⌶)'a←42'

∧

Chapter 3: The I-Beam Operator 193

Overwrite Free Pockets R←127⌶Y

Overwrites all free pockets in the workspace.

Some applications (cryptography for example) make use of secure data during
execution. The nature of the APL workspace is such that remnants of this secure data
may persist in the workspace (and thus the process memory) even after the relevant
APL variables have been expunged. This function overwrites all unused data pockets
in the workspace so that any potentially secure data is removed.

Y is any empty array, preferably ⍬(zilde). R is always 1.

It is the responsibility of the programmer to ensure that there are no USED pockets in
the workspace that reference the data.

Example
∇ foo;a

[1] a←'my secure data'
[2] ⎕EX'a'
[3] ⍝ 'my secure data' is now in an
[4] ⍝ UNUSED pocket in the workspace
[5] a←127⌶0 ⍝ all unused pockets are overwritten,
[6] ⍝ 'my secure data' is no longer present

∇

Whereas
∇ foo;a;b

[1] a←'my secure data'
[2] b←a
[3] ⎕EX'a'
[4] ⍝ 'my secure data' is now in an
[5] ⍝ UNUSED pocket in the workspace
[6] a←127⌶0 ⍝ all unused pockets are overwritten,
[7] ⍝ but 'my secure data' is still present
[8] ⍝ because it is referenced by b

∇

Chapter 3: The I-Beam Operator 194

Canonical Representation R←180⌶Y

This function is the same as the system function ⎕CR except that it can be used to
obtain the canonical representation of methods in classes. 180⌶ is used by
]PROFILE.

Example
)load ComponentFile

C:\Program Files\Dyalog\Dyalog APL-64 15.0 Unicode\...

180⌶'ComponentFile.Close'
Close
:Implements Destructor
:If tie∊⎕FNUMS

:If temp ⋄ Name ⎕FERASE tie
:Else ⋄ ⎕FUNTIE tie
:EndIf

:EndIf

Unsqueezed Type R←181⌶Y

Y is any array.

The result R is an integer scalar containing an integer value which indicates the type
of the array. For further information see Data Representation (Monadic) on page 336.

181⌶ is functionally identical to monadic ⎕DR, except that no attempt is made to
squeeze the data into smaller data types. ⎕DR always attempts to squeeze the data;
181⌶ does not, but if a workspace compaction occurs during execution of 181⌶, the
data may still be squeezed before the type is identified.

Example
⎕dr 1↑1 1000

11
(181⌶) 1↑1 1000

163

Chapter 3: The I-Beam Operator 195

Syntax Colouring R←200⌶Y

This function obtains syntax colouring information for a function.

Y is a vector of character vectors containing the ⎕NR representation of a function or
operator.

R is a vector of integer vectors with the same shape and structure of Y in which each
number identifies the syntax colour element associated with the corresponding
character in Y.

∇foo∇
∇ foo;local

[1] global
[2] local←⍴⍴'hello'

∇
⎕NR 'foo'

foo;local global local←⍴⍴'hello'

{(↑⍵),↑200⌶⍵}⎕NR 'foo'
foo;local 3 21 21 21 19 34 34 34 34 34 0 0 0 0 0 0
global 3 7 7 7 7 7 7 0 0 0 0 0 0 0 0 0
local←⍴⍴'hello' 3 34 34 34 34 34 19 23 23 4 4 4 4 4 4 4

In this example:

21 is the syntax identifier for "character constant"
19 is the syntax identifier for "primitive"
3 is the syntax identifier for "white space"
34 is the syntax identifier for "local name"
7 is the syntax identifier for "global name"
23 is the syntax identifier for "idiom"

The list of syntax colour elements supported by the current interpreter is given by
201⌶. It is important to note that the values may change within a release, and are
very likely to change across releases .. you should always call 201⌶ rather than
relying the results from a different interpreter. See Syntax Colour Tokens on page
196.

Chapter 3: The I-Beam Operator 196

Syntax Colour Tokens R←201⌶Y

This function provides a description of the syntax colour tokens reported by 200⌶.
See Syntax Colouring on page 195

Y is ⍬ (zilde).

R is a 3-column matrix that describes the syntax colouring tokens as follows:

R[;1] Token type

R[;2] Token Value

R[;3] Internal description

Example
⍴201⌶⍬

207 3
3 3↑201⌶⍬

┌────────────┬─┬────────────┐
│Global token│0│MINI_NULL │
├────────────┼─┼────────────┤
│Global token│1│MINI_COMMENT│
├────────────┼─┼────────────┤
│Global token│2│MINI_UCC │
└────────────┴─┴────────────┘

Chapter 3: The I-Beam Operator 197

Compress Vector of Short Integers R←X(219⌶)Y

In this section, the term sint_vector is used to refer to a simple integer vector whose
items are all in the range ¯128 to 127 i.e. they are type 83. For further information
see Data Representation (Monadic) on page 336.

In most cases this I-Beam functionality will be used in conjunction with 220⌶
(Serialise/Deserialise Array). However, it may be possible to pass the raw compressed
data to and from other applications.

X specifies the operation to be performed, either compression or decompression, the
compression library to be used, and any optional parameters. Y contains the data to
be operated on.

Compression
Ymust be a sint_vector.

R is a two item vector, each of which is a sint_vector. R[1] describes the
compression, and R[2] contains the raw data which is the result of applying the
compression library to the input data Y.

X is specified as follows:

X[1] X[2] Compression Library

1 n/a LZ4

2 0 .. 9 zlib

3 0 .. 9 gzip

If LZ4 compression is required, then Xmust either be a scalar or a one element vector.
Otherwise, X[2], if present, specifies the compression level; higher numbers produce
better compression, but take longer.

Decompression
R is a sint_vector, containing the output of applying the decompression library to the
input data, Y.

If X is a scalar or a one item vector, and has the value 0, then Ymust be a vector of
two items which is the result of previously calling 219⌶ to compress a sint_vector.

Chapter 3: The I-Beam Operator 198

Otherwise, X is a scalar or one or two element vector and Ymust be a sint_vector.

The first element of Xmust be one of the following values.

X[1] Compression Library

¯1 LZ4

¯2 zlib

¯3 gzip

The second, optional, element of X specifies the length of the uncompressed data. Its
presence results in a more efficient use of the compression library.

Xmay not be a two item vector whose first item has the value 0.

Examples
sint←{⍵-256×⍵>127}
utf8←'UTF-8'∘⎕ucs
str←'empty←⍬'
⊣v←sint utf8 str

101 109 112 116 121 ¯30 ¯122 ¯112 ¯30 ¯115 ¯84
⊣comp←1 (219⌶) v

8 ¯55 1 0 0 0 0 11 ¯80 101 109 112 116 121 ¯30 ¯122 ¯112
¯30 ¯115 ¯84

utf8 256| 0(219⌶)comp
empty←⍬

utf8 256| ¯1(219⌶)2⊃comp
empty←⍬

Chapter 3: The I-Beam Operator 199

Serialise/Deserialise Array R←X(220⌶)Y

In this section, the term sint_vector is used to refer to a simple integer vector whose
items are all in the range ¯128 to 127 i.e. they are type 83. For further information
see Data Representation (Monadic) on page 336.

It is expected that in many cases this I-Beam functionality will be used in
conjunction with 219⌶ - Compress/Decompress vector of short integers. It would
also be possible to encrypt the serialised form and write to a file (either component or
native), and reverse the process at a later date.

X is a scalar which can take the value 0 or 1.

When X is 1, Y can be any array. The result R is the serialised form of the array,
presented as a sint_vector.

When X is 0, Ymust be a sint_vector. The result R is an array whose serialised form is
represented by Y.

Typically it is not possible to construct a vector which can be deserialised; it is
expected that the only source of a vector which can be deserialised is the result of
using 1(220⌶) to serialise an array.

The result of 1(220⌶) will differ between interpreters of differing widths and
editions, but the resulting vector can be deserialised in other interpreters, with the
exception that, like arrays in component files, it may not be possible to deserialise an
array which was serialised in a later interpreter

The following identity holds true:

A≡ 0(220⌶) 0(219⌶) 1(219⌶) 1(220⌶) A

Example
a←'ab'
b←1(220⌶)a
b

¯33 ¯108 5 0 0 0 31 39 0 0 2 0 0 0 97 98 0 0
c←0(220⌶)b
c≡a

1

Chapter 3: The I-Beam Operator 200

Compiler Control R←{X}(400⌶)Y

Controls the actions of the Compiler. For further information, see Compiler User
Guide.

The optional left-argument Xmust be one of the following:

X Description

0 Set automatic compilation options (default)

1
Determine whether the function/operator Y has been successfully
compiled

2 Compile the function/operator Y

3 Discard compiled form of the function/operator Y

4 Show bytecode for the compiled function/operator Y

nsref
Compile the function/operator Y using user-defined callbacks in this
namespace to provide information about global names

The nature of Y and R depend on the value of X as follows:

X=0 : Control Automatic Compilation (default)
Ymust be an integer 0, 1, 2, or 3.

Y Description

0 disable automatic compilation (initial setting)

1
compile functions when they are fixed (with ⎕FX or from the function
editor)

2 compile operators the first time they are executed

3
compile functions when they are fixed (with ⎕FX or from the function
editor) and compile operators the first time they are executed

The result R is the previous value of Y.

The automatic compilation setting is maintained within the workspace, and is saved
and loaded with the workspace.

Chapter 3: The I-Beam Operator 201

X=1: Query Compilation State
Ymust be a character vector, matrix or vector of vectors specifying the name of a
function or operator or a list of such names.

The result R is a Boolean scalar or vector, with the value 1 if the corresponding
function/operator has been successfully compiled or 0 if it has not.

X=2: Compile
Ymust be a character vector, matrix or vector of vectors specifying the name of a
function or operator or a list of such names that should be compiled.

The result R is a matrix of diagnostic information or, if Y was either a matrix or a
vector of vectors, a vector of such matrices. Each row of the matrix describes a
problem that caused the compilation to fail, with four columns corresponding to:

1. the APL error number
2. the line number in the function/operator
3. the column number (currently always 0)
4. the error message

If the matrix R has zero rows then the compilation was successful.

If this mechanism is used to compile operators, then the compiled bytecode will
assume that the operator's operands are functions rather than arrays. At run time, the
operands will be checked – if they are functions then the compiled bytecode will be
used, otherwise the operator will be interpreted.

X=3: Discard Compiled Form
If Y is empty, discard any compiled bytecode for all functions and operators in the
workspace. If Y is a character vector, matrix or vector of vectors specifying the name
of a function or operator or a list of such names, discard any compiled bytecode for
the name(s) specified by Y. R is always 0

X=4: Show Bytecode
Ymust be a character vector, matrix or vector of vectors specifying the name of a
function or operator or a list of such names.

The result R is a multi-line string (that is, a character vector with embedded newlines)
or, if Y was either a matrix or a vector of vectors, a vector of such strings. Each string
is a human-readable representation of the bytecode of a compiled function or
operator.

This functionality is provided for information and diagnostic purposes only. The
human-readable form of the bytecode is subject to change at any time.

Chapter 3: The I-Beam Operator 202

X is a namespace reference: Compile With Callbacks
Ymust be a character vector, matrix or vector of vectors specifying the name of a
function or operator or a list of such names. The specified functions or operators are
compiled in the same way as when X = 2 except that the compiler uses the user-
defined callback functions in the namespace X to obtain information about global
names. The namespace X can contain any or all of following callback functions:

Callback Description

quadNC

analogous to the system function ⎕NC. When applied
monadically to an enclosed character vector it should return the
detailed name class of that name. For example, given the name
of a global dfn it should return the value 3.2.

quadAT

analogous to the system function ⎕AT. When applied
monadically to an enclosed character vector it should return a 1
by 4 matrix whose first item is a vector of 3 integers describing
(respectively) the result, function valence and operator valence
of the name.

getValue

used to obtain the value of global constants. When applied
monadically to a character vector that is a global constant it
should return the enclose of the constant value, otherwise it
returns ⍬.

Each of these callback functions returns information about names that should be
guaranteed to exist when the compiled functions are executed. The compiler assumes
that the information returned by the callbacks is correct, and generates bytecode
accordingly. In the case of quadNC and quadAT, if the information returned by the
callbacks turns out not to be correct when the compiled function is executed, then a
runtime error is generated.

The result R is a matrix of diagnostic information or, if Y was either a matrix or a
vector of vectors, a vector of such matrices. Each row of the matrix describes a
problem that caused the compilation to fail, with four columns corresponding to:

1. the APL error number
2. the line number in the function/operator
3. the column number (currently always 0)
4. the error message

If the matrix R has zero rows then the compilation was successful.

Chapter 3: The I-Beam Operator 203

Trap Control R←600⌶Y

This function is used to temporarily disable the error trapping mechanism used by
:Trap and ⎕TRAP. This can be useful in debugging applications.

Y is an integer 0, 1 or 2 as shown in the following table.

R is the previous value (0, 1, or 2) of the trap state.

Y Effect

0 Enable all traps.

1 Disable all traps.

2
Disable traps in suspended functions from triggering when an error is
generated in the Session.

Note that the Disable traps in session option of the Session Optionsmenu performs
the same tasks as (600⌶0) and (600⌶2).

For error-guards in dfns 600⌶0 and 600⌶2 are equivalent; in neither case is an error
generated in the session caught by an error guard in a suspended dfn.

Chapter 3: The I-Beam Operator 204

Case Convert R←{X}(819⌶)Y

Converts character data in Y to upper or lower-case. This function is considerably
faster than any comparable function coded in APL, especially on nested arrays.

Ymay be any array of arbitrary depth so long as all the elements are characters.

The optional left-argument X is 0 (convert to lower-case) or 1 (convert to upper-case).
If omitted, the default is 0.

The result R has the same structure as Y but each character element is case folded to
upper or lower case.

Characters are converted per the default case mappings specified by The Unicode
Consortium, described at:

ftp://ftp.unicode.org/Public/3.0-Update/UnicodeData-3.0.0.html

and using the table at:

http://unicode.org/Public/UNIDATA/UnicodeData.txt

If conversion is being used to do case-insensitive character comparisons then
converting everything to lower case is generally preferable to converting everything
to upper. This is because converting to lower case can be faster.

This I-beam is supported in Classic Edition using the same code as the Unicode
Edition. This means that any case-folding defined in the input translate tables is
ignored, and that TRANSLATION ERRORs will be generated if the folded characters
do not appear in ⎕AV.

Examples
(819⌶) 'How many Roads must a man walk down'

how many roads must a man walk down
1 (819⌶) 'How many Roads must a man walk down'

HOW MANY ROADS MUST A MAN WALK DOWN

data←1000⍴⊂'Hello there.'
lc_data←819⌶ data
4↑lc_data

hello there. hello there. hello there. hello there.

Chapter 3: The I-Beam Operator 205

Called Monadically R←900⌶Y

Identifies how the current function was called. 900⌶ applies only when called from
within a variadic defined function (not a dfn).

Ymay be any array.

The result R is Boolean. 1 means that the current function was called monadically; 0
means that it wasn't. If there is no function on the stack, the result is 0.

Example
∇ r←{left}foo right

[1] r←900⌶⍬
∇
foo 10

1
0 foo 10

0

Chapter 3: The I-Beam Operator 206

Temporary Directory R←739⌶Y

Returns the name of a system temporary directory suitable for user files, as a character
vector. The name reported does not include a trailing directory separator

Y is 0.

The result R is a character vector.

Example (Windows)
739⌶0

C:/Users/Pete/AppData/Local/Temp

Example (non-Windows)
739⌶0

/tmp

Chapter 3: The I-Beam Operator 207

Loaded Libraries R←950⌶Y

Reports the names of the dynamic link libraries that are currently loaded as a result of
executing ⎕NA.

Y is an empty vector.

The result R is a vector of character vectors containing the names of all the DLLs or
shared libraries that have been explicitly loaded by ⎕NA and are still loaded by virtue
of the presence of at least one external function reference.

Examples
)clear

clear ws
'Aloc'⎕NA'P kernel32∣GlobalAlloc U4 P'
'Free'⎕NA'P kernel32∣GlobalFree P'
'Lock'⎕NA'P kernel32∣GlobalLock P'
'Ulok'⎕NA'U4 kernel32∣GlobalUnlock P'
'Valu'⎕NA'U4 version∣VerQueryValue* P <0T >U4 >U4'
'copy'⎕NA'P msvcrt∣memcpy >U4[] P U4'

950⌶⍬
KERNEL32.DLL VERSION.DLL MSVCRT.DLL

)fns
Aloc Free Lock Ulok Valu copy

)erase Aloc Free Lock Valu
950⌶⍬

KERNEL32.DLL MSVCRT.DLL
)fns

Ulok copy

)erase Ulok
950⌶⍬

MSVCRT.DLL

)clear
clear ws

950⌶⍬

Chapter 3: The I-Beam Operator 208

Number of Threads R←1111⌶Y

Specifies how many threads are to be used for parallel execution.

If Y has the value ⍬, R is the number of virtual processors in the machine.

Otherwise, Y is an integer that specifies the number of threads that are to be used
henceforth for parallel execution. Prior to this call, the default number of threads is
specified by the parameter APL_MAX_THREADS. See Installation & Configuration
Guide: APL_MAX_THREADS Parameter.

Note that whatever the value of Y, Dyalog limits the number of threads to 64. So the
effective number of threads is Y⌊64.

R is the previous value.

To reset the number of threads to be the same as the number of virtual processors run:

{}1111⌶ 1111⌶⍬

See Programming Reference Guide: Parallel Execution and Parallel Execution
Threshold on page 208.

Parallel Execution Threshold R←1112⌶Y

Y is an integer that specifies the array size threshold at which parallel execution takes
place. If a parallel-enabled function is invoked on an array whose number of elements
is equal to or greater than this threshold, execution takes place in parallel. If not, it
doesn't.

Prior to this call, the default value of the threshold is specified by an environment
variable named APL_MIN_PARALLEL. If this variable is not set, the default is
32768.

R is the previous value.

See Programming Reference Guide: Parallel Execution and Number of Threads on
page 208.

Chapter 3: The I-Beam Operator 209

Update Function Time Stamp {R}←X(1159⌶)Y

Y is an array of function names in the same format as the right argument of ⎕AT. For
further information, see Attributes on page 284.

X is an array of function attributes in the same format as the output of ⎕AT.

The shy result R is a vector of numeric items, one per each specified function
containing the following values:

0
No change was made; the name is not that of a function, or the function
was locked

1 The time and user stamp were updated

Note that the last item of the function time stamp must be set to 0 otherwise 1159 ⌶
will generate a DOMAIN ERROR. Additionally, the time stamp must be greater than
1970 1 1 0 0 0 0.

Example
]disp ⎕AT'Christmas'

┌→────┬───────────────────┬─┬───────┐
│0 0 0│2013 3 1 11 14 58 0│0│Richard│
└~───→┴~─────────────────→┴─┴───────┘

x←⎕AT 'Christmas'
x[2 4]←(2012 12 25 11 59 0 0)('Santa')
x (1159⌶) 'Christmas'

]disp ⎕AT'Christmas'
┌→────┬────────────────────┬─┬─────┐
│0 0 0│2012 12 25 11 59 0 0│0│Santa│
└~───→┴~──────────────────→┴─┴────→┘

Chapter 3: The I-Beam Operator 210

Hash Array R←{X}1500⌶Y

This function creates a hashed array, returns an unhashed copy of an array or reports
the state of hashing of an array.

Ymay be any array.

If X is omitted, the result R is a copy of Y that has been invisibly marked as hashed. R
behaves the same as Y in all respects. The only difference is that dyadic ⍳ and related
functions are expected to run faster when applied to a hashed array. The hash will be
created the first time the array is used as an argument to ⍳ or other set functions. The
hashed property is preserved across assignments and argument passing, but in general
is not preserved by any primitive functions.

If X is 1, the result R returns an indication of whether Y has been marked for hashing
or whether the hash has been created:

R State of Y

0 Y has not been marked for hashing

1
Y has been marked for hashing, but the hash tables has not yet been
created

2 Y has a hash table

If X is 2, the result R is the unhashed form of Y.

Examples:
R←1500⌶1 2 3 ⍝ R is marked for hashing

1 (1500⌶)R
1

S←R ⍝ S is marked for hashing
{⍵⍳2 3 5}R ⍝ R is now hashed
1 (1500⌶)R

2
U←(⍴R)⍴R ⍝ U is not hashed
U←⊃⊂R ⍝ ditto
1 (1500⌶)U

0

If R is a hashed array then certain forms of modified assignment will preserve and
efficiently update the hash table:

R,←Y ⍝ only for scalar or vector R
R⍪←Y
R↓⍨←Y ⍝ only for negative singleton Y

Chapter 3: The I-Beam Operator 211

Examples:
R←1500⌶1 2 3 ⍝ R is hashed

R,←5 ⍝ ,← preserves and updates
⍝ the hash table

R
1 2 3 5

R⍳2 4 6
2 5 5

R↓⍨←¯2 ⍝ ↓⍨← preserves and updates
⍝ the hash table

R
1 2

R⍳2 4 6
2 3 3

The hashed property survives)SAVE/)LOAD and)SAVE/)COPY. It does not
currently survive writing to a component file and reading back again.

Chapter 3: The I-Beam Operator 212

Memory Manager Statistics R←{X}(2000⌶)Y

This function returns information about the state of the workspace and provides a
means to reset certain statistics and to control workspace allocation. This I-Beam is
provided for performance tuning and is VERY LIKELY to change in the next release.
See also Installation & Configuration Guide: Workspace Management.

Y is a simple integer scalar or vector containing values listed in the table below.

If X is omitted, the result R is an array with the same structure as Y, but with values in
Y replaced by the following statistics. For any value in Y outside those listed below,
the result is undefined.

Value Description

0 Workspace available (a "quick" ⎕WA)

1 Workspace used

2 Number of compactions since the workspace was loaded

3 Number of garbage collections that found garbage

4 Current number of garbage pockets in the workspace

9 Current number of free pockets in the workspace

10 Current number of used pockets in the workspace

12 Sediment size

13 Current workspace allocation, i.e. the amount of memory that is
actually being used

14
Workspace allocation high-water mark, i.e. the maximum amount of
memory that has been allocated since the workspace was loaded or
since this count was reset.

15 Limit on minimum workspace allocation

16 Limit on maximum workspace allocation

19 The number of calls to ⎕WA or 2002⌶ since the last time 2000⌶
was called, or when the process started.

Note that while all other operations are relatively fast, the operation to count the
number of garbage pockets (4) may take a noticeable amount of time, depending
upon the size and state of the workspace.

See also Specify Workspace Available on page 215.

Chapter 3: The I-Beam Operator 213

Examples
2000⌶0

55414796
2000⌶0,⍳16 ⍝ with MAXWS=95G

1.02004292E11 1181312 1 1 0 ¯1 ¯1 ¯1 ¯1 78 13280 ¯1
1180800 1595016496 1595042464 0 1.020054733E11

If X is specified, it must be either a simple integer scalar, or a vector of the same
length as Y, and the result R is ⍬. In this case, the value in Y specifies the item to be
set and X specifies its new value according to the table below.

Value Description

2 0 resets the compaction count; no other values allowed

3 0 resets the count of garbage collections that found garbage; no
other values allowed

14

0 resets the workspace allocation high-water mark; no other values
allowed. This should be called following a call to ⎕WA (which
compacts the workspace and returns unused memory to the
operating system).

15 Sets the minimum workspace allocation to the corresponding value
in X; must be between 0 and the current workspace allocation

16
Sets the maximum workspace allocation to the corresponding value
in X; 0 implies MAXWS otherwise must be between the current
workspace allocation and MAXWS.

19 0 resets the compaction count; no other values allowed

Notes:
l Note that the workspace allocation high-water mark indicates a minimum
value forMAXWS.

l Limiting the maximum workspace allocation can be used to prevent code
which grabs as much workspace as it can from skewing the peak usage
result.

l Limiting the minimum workspace allocation can avoid repeatedly
committing and releasing memory to the Operating System when memory
usage is fluctuating.

Chapter 3: The I-Beam Operator 214

Examples
2000⌶2 3

6 0 33216252
0 (2000⌶)2 3 14 ⍝ Reset compaction count

2000⌶2 3
0 0

30000000 40000000(2000⌶)15 16 ⍝ Restrict min/max ws

(2000⌶)15 16
30000000 40000000

0 (2000⌶)15 16 ⍝ Reset min/max ws

(2000⌶)15 16
0 65536000

(2000⌶)13 14 ⍝ Current, peak WS allocation
4072532 4072532

a←10e6⍴'x' ⍝ Increase WS allocation

(2000⌶)13 14 ⍝ Current, peak WS allocation
15108580 15108580

⎕ex 'a' ⋄ {}⎕wa ⍝ Decrease current WS allocation

(2000⌶)13 14 ⍝ Current, peak WS allocation
1962856 15108580

0 (2000⌶) 14 ⍝ Reset High-water mark

(2000⌶)13 14 ⍝ Current, peak WS allocation
1962856 1962856

Chapter 3: The I-Beam Operator 215

Specify Workspace Available R←2002⌶Y

This function is identical to the system function ⎕WA except that it provides the
means to specify the amount of memory 1 that is committed for the workspace rather
than have it assigned by the internal algorithm. Committed memory is memory that is
allocated to a specific process and thereby reduces the amount of memory available
for other applications. See also Installation & Configuration Guide: Workspace
Management.

Like ⎕WA, 2002⌶ compacts the workspace so that it occupies the minimum number
of bytes possible, adds an extra amount, and then de-commits all the remaining
memory that it is currently using, allowing it to be allocated by the operating system
for use by other applications.

The argument Y is an integer which specifies the size, in bytes, of this extra amount.

The purpose of the extra amount is to reduce the likelihood that APL will
immediately have to ask the operating system to re-commit memory that it has just
de-committed, something that would have a deleterious effect on performance. At the
same time, if the extra amount were to be excessively large, APL could starve other
applications of memory which itself could reduce the effective performance of the
system.Whereas ⎕WA calculates the size of the extra amount using a simple internal
algorithm, 2002⌶ uses a value specified by the programmer.

R is an integer which reports the size in bytes of the memory committed for the
workspace, and is the sum of the minimum amount required by the workspace itself
and the argument Y.

If the size of the committed workspace would be smaller than the minimum value
(specified by 2000⌶) or larger than the maximum value (which defaults to MAXWS), a
DOMAIN ERROR is signalled.

See also Memory Manager Statistics on page 212.

Note that this function does not change the size of the extra amount that will be
applied subsequently by ⎕WA or by an automatic compaction.

1The term memory here means virtual memory which includes memory mapped to disk.

Chapter 3: The I-Beam Operator 216

Update DataTable R←{X}2010⌶Y

Windows only.

This function performs a block update of an instance of the ADO.NET object
System.Data.DataTable. This object may only be updated using an explicit
row-wise loop, which is slow at the APL level. 2010⌶ implements an internal row-
wise loop which is much faster on large arrays. Furthermore, the function handles
NULL values and the conversion of internal APL data to the appropriate .NET
datatype in a more efficient manner than can be otherwise achieved. These 3 factors
together mean that the function provides a significant improvement in performance
compared to calling the row-wise programming interface directly at the APL level.

Y is a 2, 3 or 4-item array containing:

1. A reference to an instance of System.Data.DataTable.
2. A matrix with the same number of columns as the table specified by Y[1].
3. An optional vector which specifies for each column in the DataTable the

values in Y[2]which should be converted to a System.DBNull.
4. An optional vector which specifies the indices (in zero origin) of the rows

of the DataTable which are to be updated. If omitted, the matrix specified
by Y[2] will be appended to the DataTable.

The optional argument X is Boolean vector, where a 1 indicates that the
corresponding column of Y[2] is a string fromwhich the new values should be
converted according to that column's data type.

Example
Shown firstly for comparison is the type of code that is required to update a
DataTable by looping:

⎕USING←'System' 'System.Data,system.data.dll'
dt←⎕NEW DataTable
ac←{dt.Columns.Add ⍺ ⍵}
'S1' 'S2' 'I1' 'D1' ac¨String String Int32 DateTime

S1 S2 I1 D1

NextYear←DateTime.Now+{⎕NEW TimeSpan (4↑⍵)}¨⍳n←365
data←(⍕¨⍳n),(n⍴'odd' 'even'),(10|⍳n),⍪NextYear
¯2 4↑data

364 even 4 18-01-2011 14:03:29
365 odd 5 19-01-2011 14:03:29

ar←{(row←dt.NewRow).ItemArray←⍵ ⋄ dt.Rows.Add row}
t←3⊃⎕ai ⋄ ar¨↓data ⋄ (3⊃⎕ai)-t

449

Chapter 3: The I-Beam Operator 217

This result shows that this code can only insert roughly 800 rows per second (3⊃⎕AI
returns elapsed time in milliseconds), because of the need to loop on each row and
perform a noticeable amount of work each time around the loop.

2010⌶ does all the looping in compiled code:

dt.Rows.Clear ⍝ Delete the rows inserted above
SetDT←2010⌶
t←3⊃⎕AI ⋄ SetDT dt data ⋄ (3⊃⎕AI)-t

4

So in this case, using 2010⌶ achieves over 90,000 rows per second.

DateTime columns
Creating large arrays of DateTime objects in the workspace takes additional
resources, and unless the data is already stored that way, it is not necessary to convert
it to .NET objects. Data in ⎕TS format (7-element integer vector) or in a suitable
character format may be used directly. The former is a specific Dyalog optimisation;
the latter a feature of .NET Version 4.0. The following examples use numeric and
character data for the dates:

months←12⍴31 ⋄ months[2 4 6 9 11]←29 30 30 30 30
n←⍴NextYear←7↑¨⊃,/(⍳12){(⊂2016,⍺),¨⍳⍵}¨months
data←(⍕¨⍳n),(n⍴'odd' 'even'),(10|⍳n),⍪NextYear
SetDT dt data

n←⍴NextYear←⊃,/(⍳12){(⊂'2016/',(⍕⍺),'/'),∘⍕¨⍳⍵}¨months
data←(⍕¨⍳n),(n⍴'odd' 'even'),(10|⍳n),⍪NextYear
SetDT dt data

Using Strings
In circumstances where .NET fails to accept character data automatically, it is
possible to force conversion from character format to the corresponding .NET type.

If specified, the optional left argument X instructs the system to pass the
corresponding columns of data to the Parse()method of the data type for those
columns prior to performing the update.

In the following example, the left argument is not strictly necessary using .NET
Version 4.0, but forces parsing for the data in the 4th column:

months←12⍴31 ⋄ months[2 4 6 9 11]←29 30 30 30 30
n←⍴NextYear←⊃,/(⍳12){(⊂'2016/',(⍕⍺),'/'),∘⍕¨⍳⍵}¨months
data←(⍕¨⍳n),(n⍴'odd' 'even'),(10|⍳n),⍪NextYear
0 0 0 1 SetDT dt data

Chapter 3: The I-Beam Operator 218

Handling Nulls
If applicable, Y[3] is a vector with as many elements as the DataTable has
columns, indicating the value that should be converted to System.DBNull as data
is written. For example, using the same DataTable as above:

t
<null> odd 1 21-01-2010 14:50:19
two even 2 22-01-2010 14:50:19
three odd 99 23-01-2010 14:50:19

dt.Rows.Clear ⍝ Clear the contents of dt
SetDT dt t ('<null>' 'even' 99 '')

Above, we have declared that the string '<null>' should be considered to be a
null value in the first column, 'even' in the second column, and the integer 99 in
the third.

Updating Selected Rows
Sometimes, you may have read a very large number of rows from a DataTable, but
only want to update a single row, or a very small number of rows. Row indices can be
provided as the fourth element of the argument to 2010⌶. If you are not using Y[3]
explicitly, you can just use an empty vector as a placeholder. Continuing from the
example above, we could replace the first row in our DataTable using:

SetDT←2010⌶
SetDT dt (1 4⍴'one' 'odd' 1 DateTime.Now) ⍬ 0

Note
l Y[2] must be provided as a matrix, even if you only want to update a
single row,

l Y[4] specifies row indices using zero origin (the first row has number 0).

Warning
If you are experimenting with writing to a DataTable, note that you should call
dt.Rows.Clear each time to clear the current contents of the table. Otherwise you
will end up with a very large number of rows after a while.

Chapter 3: The I-Beam Operator 219

Read DataTable R←{X}2011⌶Y

Windows only.

This function performs a block read from an instance of the ADO.NET object
System.Data.DataTable. This object may only be read using an explicit row-
wise loop, which is slow at the APL level. 2011⌶ implements an internal row-wise
loop which is much faster on large arrays. Furthermore, the function handles NULL
values and the conversion of .NET datatypes to the appropriate internal APL form in
a more efficient manner than can otherwise be achieved. These 3 factors together
mean that the function provides a significant improvement in performance compared
to calling the row-wise programming interface directly at the APL level.

Y is a scalar or a 2-item array containing:

1. A reference to an instance of System.Data.DataTable.
2. An optional vector which specifies the values to which a

System.DBNull should be mapped in the corresponding columns of the
result

The optional argument X is Boolean vector, where a 1 indicates that the
corresponding column of the result should be converted to a string using the
ToStringmethod of the data type of column in question. It is envisaged that this
argument may be extended in the future, to allow other conversions – for example
converting Dates to a floating-point format

The result R is a matrix with the same shape as the DataTable identified in Y.

Example
First for comparison is shown the type of code that is required to read a DataTable
by looping:

t←3⊃⎕AI ⋄ data1←↑(⌷dt.Rows).ItemArray ⋄ (3⊃⎕AI)-t
191

The above expression turns the dt.Rows collection into an array using ⌷, and mixes
the ItemArray properties to produce the result. Although here there is no explicit
loop, involved, there is an implicit loop required to reference each item of the
collection in succession. This operation performs at about 200 rows/sec.

2011⌶ does the looping entirely in compiled code and is significantly faster:

GetDT←2011⌶
t←3⊃⎕AI ⋄ data2←GetDT dt ⋄ (3⊃⎕AI)-t

25

Chapter 3: The I-Beam Operator 220

Example
In the first example shown above, 2011⌶ created 365 instances of
System.DateTime objects in the workspace. If we are willing to receive the
timestamps in the form of strings, we can read the data almost an order of magnitude
faster:

t←3⊃⎕AI ⋄ data3←0 0 0 1 GetDT dt ⋄ (3⊃⎕AI)-t
3

The left argument to 2011⌶ allows you to flag columns which should be returned as
the ToString() value of each object in the flagged columns. Although the
resulting array looks identical to the original, it is not: The fourth column contains
character vectors:

¯2 4↑data3
364 even 4 18-01-2011 14:03:29
365 odd 5 19-01-2011 14:03:29

Depending on your application, you may need to process the text in the fourth
column in some way – but the overall performance will probably still be very much
better than it would be if DateTime objects were used.

Handling Nulls
Using the DataTable produced by the corresponding example shown for 2010⌶ it
can be shown that by default null values will be read back into the APL workspace
as instances of System.DBNull.

GetDT←2011⌶>

⎕←z←GetDT dt

odd 1 21-01-2010 14:50:19
two 2 22-01-2010 14:50:19
three odd 23-01-2010 14:50:19

(1 1⍉z).GetType

System.DBNull System.DBNull System.DBNull

However, by supplying a left argument to 2011⌶, we can request that nulls in each
column are mapped to a corresponding value of our choice; in this case, '<null>',
'even', and 99 respectively.

GetDT dt ('<null>' 'even' 99 '')
<null> odd 1 21-01-2010 14:50:19
two even 2 22-01-2010 14:50:19
three odd 99 23-01-2010 14:50:19

Chapter 3: The I-Beam Operator 221

Remove Data Binding R←2014⌶Y

Windows only.

This function disassociates a data-bound variable from its data binding source.

Y is any array.

If Y or an element of Y is a character vector that contains the name of a data-bound
variable, that variable is dissociated from its data binding source.

The result R is always 1.

Example
2014⌶'txtSource'

1

Chapter 3: The I-Beam Operator 222

Create Data Binding Source R←{X}2015⌶Y

Windows only.

Creates an object that may be used as a data source forWPF data binding. 1

This function connects a Binding Target to a Binding Source. In WPF a Binding
Target is a particular property of a user interface object; for example, the Text
property of a TextBox object. A Binding Source is a Path to a value in a data object
(which may contain other values). The value of the Binding Source determines the
value of the Binding Target. If two-way binding is in place, a change in a user-
interface component causes the bound data value to change accordingly. In the
example of the TextBox, the value in the Binding Source changes as the user types
into the TextBox.

Y is a character vector containing one of the following:

l the name of a variable
l the name of a namespace containing one or more variables
l the name of a variable containing a vector of refs to namespaces, each of
which contains one or more variables.

If the name specified by Y doesn't exist or represents neither a variable nor a
namespace, the function reports DOMAIN ERROR. Currently, no further validation of
the structure and contents of Y is performed, but nothing other than the examples
described herein is supported.

If the optional left argument X is given and Y is a variable other than a ref, X specifies
the binding type for that variable. If Y specifies one or more namespaces, X specifies
the names and binding types of each of the variables which are to be bound,
contained in the namespaces specified by Y.

The structure of X depends upon the structure of Y and is discussed later in this topic.

If X is omitted, all of the variables specified by Y are bound with default binding
types.

Here the term bind variable refers to any variable specified by X and Y to be bound,
and the term binding typemeans the .NET data type to which the value of the bind
variable is converted before it is passed to the .NET interface.

1It is beyond the scope of this document to fully explain the concepts of WPF data binding. See
Microsoft Developer Network, Data Binding Overview.

Chapter 3: The I-Beam Operator 223

2015⌶ creates a Binding Source object R. This is a .NET object which contains Path
(s) to one or more bind variables. This object may then be assigned to a property of a
WPF object or passed a s as a parameter to a WPFmethod that requires a Binding
Source.

Bind Variables and Bind Types
A bind variable should be of rank 2 or less. Higher rank arrays are not supported.

If not specified by X, the binding type of a bind variable is derived from its content at
the time 2015⌶ is executed. The binding type is then stored with the variable in the
workspace. There is no mechanism to change a variable's binding type without
erasing the variable and re-executing 2015⌶. If you change the type or rank of a bind
variable while it is bound (for example from a variable to a namespace), the
behaviour of the system is unpredictable.

The default binding type is derived as follow:

If the bind variable is a simple scalar number the default binding type is
System.Object. At the point when the value of the variable is passed to the .NET
interface this will be cast to a numeric type such as System.Int16,
System.Int32, System.Int64, or System.Double, depending upon the
internal representation of the data. The .NET property to which it is bound will
typically only accept a single Type (for example System.Int32), so to avoid
unpredictable behaviour, it is recommended that the left argument X be used to
specify the binding type for numeric data.

If the bind variable is a character scalar or vector, the default binding type is also
System.Object, but at the point when the value of the variable is passed to the
.NET interface it will always be passed as System.String, which is suitable for
binding to any property that accepts a System.String, such as the Text property
of a TextBox.

If the bind variable is a vector other than a simple character vector, such as a vector of
character vectors, a simple numeric vector, or a vector of .NET objects, the bind type
will be a collection. This is suitable for binding to any property that represents a
collection (list) of items, for example the ItemsSource property of a ListBox.

If the bind variable is a matrix, the default binding type is System.Object.

All the examples that follow assume ⎕USING←'System'.

Chapter 3: The I-Beam Operator 224

Binding Single Variables
In this case, Y specifies the name of a variable which is one of the following:

l character vector (or scalar)
l numeric scalar
l scalar .NET object (not currently supported)
l vector of character vectors
l numeric vector
l vector of .NET objects
l matrix

X (if specified) defines the binding type for the bind variable named by Y and is a
single .NET Type.

Note that in the following examples, the reason for expunging the name first is
discussed in the section headed Rebinding a Variable.

Binding a Character Vector
This example illustrates how to bind a variable which contains a character vector.

⎕EX'txtSource'
txtSource←HELLO WORLD'
bindsource←2015⌶'txtSource'

In this example, the binding type of the variable txtSource will be
System.String, suitable for binding to any property that accepts a String, such as
the Text property of a TextBox.

Binding a Numeric Scalar
This example illustrates how to bind a variable which contains a numeric scalar
value.

⎕EX'sizeSource'
sizeSource←36
bindSource←Int32(2015⌶)'sizeSource'

In this example, the left argument Int32 specifies that the binding type for the
variable sizeSource is to be System.Int32. This means that whenever APL passes
the value of sizeSource to the control, it will first be cast to an Int32. This
makes it suitable, for example, for binding to the FontSize property of a
TextBox.

Chapter 3: The I-Beam Operator 225

A number of controls have a Value property which must be expressed as a
System.Double. The next example shows how to create a Binding Source for
such a variable.

⎕EX'valSource'
valSource←42
bindSource←Double(2015⌶)'valSource'

Binding a Scalar .NET Object
This is currently not supported.

Binding a Vector of Character Vectors
WPF data binding provides the means to bind controls that display lists of items,
such as the ListBox, ListView, and TreeView controls, to collections of data.
These controls are all based upon the ItemsControl class. To bind an
ItemsControl to a collection object, you use its ItemsSource property.

This example illustrates how to bind a variable which contains a vector of character
vectors.

⎕EX'itemsSource'
itemsSource←'beer' 'wine' 'water'
bindsource←2015⌶'itemsSource'

In this example, the binding type of the variable itemsSource will be
System.Collection, suitable for binding to the ItemSource property of an
ItemsControl.

Binding a Numeric Vector
By default, a numeric vector is bound in the same way as a vector of character
vectors, i.e. as a System.Collection, suitable for binding to the ItemSource
property of an ItemsControl.

⎕EX'yearsSource'
yearsSource←2000+⍳20
bindSource←2015⌶'yearsSource'

In principle, a numeric vector may alternatively be bound to a WPF property that
requires a 1-dimensional numeric array, by specifying the appropriate data type (e.g.
Int32, Double) for the array as the left argument. For example:

⎕EX'arraySource'
arraySource←42 24
bindSource←Int32 (2015⌶)'arraySource'

Chapter 3: The I-Beam Operator 226

Binding a Vector of .NET Objects
A vector of .NET objects is bound in the same way as a vector of character vectors,
i.e. as a System.Collection, suitable for binding to the ItemSource property
of an ItemsControl.

↑Easter
2015 4 12
2016 5 1
2017 4 16
2018 4 8
2019 4 28
2020 4 19
2021 5 2
2022 4 24
2023 4 16
2024 5 5

dt←{⎕NEW DateTime ⍵}¨Easter
bindSource←2015⌶'dt'

Note that, as a specific optimisation for binding DateTime data, it is not necessary
to create DateTime objects in the workspace. Instead, the data may be represented
by 7-element integer vectors (⎕TS format) or character strings that can be parsed by
the DateTime.Parse(String)method. However, in both cases it is necessary
to explicitly specify the binding type to force the data to be converted to
DateTime, as illustrated by the following examples:

TSEaster←7↑¨Easter
bindSource←DateTime (2015⌶) 'TSEaster'

CharEaster←'2015/4/12' '2016/5/1' '2017/4/16'
bindSource←DateTime (2015⌶) 'CharEaster'

Binding a Matrix
If the bind variable is a matrix, it is bound in a similar way to a vector of namespaces
and is discussed below.

Chapter 3: The I-Beam Operator 227

Rebinding a Variable
As mentioned earlier, when a variable is bound its binding type is stored with it in
the workspace. If you subsequently attempt to rebind the variable there is no
mechanism in place to alter the binding type. If the current binding type (whether
specified by the left argument X, or by being the default) differs from the saved one,
the function will generate a DOMAIN ERROR.

num←42
bs←2015⌶'num'

bs←'Int32'(2015⌶)'num'
DOMAIN ERROR: You cannot redefine the binding types

bs←'Int32'(2015⌶)'num'
∧

In this example, perhaps the programmer realised after binding num (with a default
binding type of System.Object) that the binding type should really be
System.Int32, and simply was trying to correct the error. To avoid this problem,
it is recommended that you expunge the name before using it.

⎕EX 'num'
num←42
bs←2015⌶'num'⍝ (default) binding type System.Object

⎕EX 'num'
num←42
bs←Int32(2015⌶)'num'

Chapter 3: The I-Beam Operator 228

Binding A Namespace
In this case, Y specifies the name of a namespace that contains one or more variables.
By default, each variable is bound using its default binding type as described above.
Objects other than variables are ignored.

If it is required to specify the binding type of any of the variables, or if certain
variables are to be excluded, the left argument is a 2-column matrix. The first column
contains the names of the variables to be bound, and the second column their binding
types.

Example
The following code snippet binds a namespace containing two variables named
txtSource and sizeSource. In this case, the name of each variable may be
specified as the Path for a WPF property that requires a String or an Int32. For
example, if bindSource were assigned to the DataContext property of a
TextBox, its Text property could be bound to txtSource and its FontSize
property to sizeSource.

src←⎕NS''
src.txtSource←'Hello World'
src.sizeSource←36
options←2 2⍴'txtSource'String'sizeSource'Int32
bindSource←options(2015⌶)'src'

Binding a Vector of Namespaces
In this case, Y specifies the name of a variable that contains a vector of refs to
namespaces. In this case, the result R is of type
Dyalog.Data.DataBoundCollectionHandler which is suitable for
binding to a WPF property that requires an IEnumerable implementation, such as
the ItemsSource property of the DataGrid.

Each namespace in Y represents one of a collection of instances of an object, which
exports a particular set of properties for binding purposes. For example, Y could
specify a wine database where each namespace represents a different wine, and each
namespace contains the same set of variables that contain the name, price (and so
forth) of each wine.

Chapter 3: The I-Beam Operator 229

Example
winelist←⎕NS¨(⍴Wines)⍴⊂''
winelist.Name←Wines
winelist.Price←0.01×10000+?(⍴Wines)⍴10000

bindSource←2015⌶'winelist'

Binding a Matrix
Binding a matrix is like binding a vector of namespaces. Each row of Y represents
one of a collection of instances of an object, which exports a particular set of
properties for binding purposes. Each column of Y represents one of these properties.

Every row in the datasource will be of the same type (which might not be the case
with an array of namespaces), and so the collection is a collection of specific things.
The specific thing is a .NET type that is created dynamically and has a unique name.

Unlike variables in namespaces, the columns of an APL matrix do not have names
which can be exported as properties, so this information must be provided in the left
argument to (2015⌶) which also specifies their data types. If the left argument is
omitted, the default names are Column1, Column2, ... and so forth and the default
data type is System.Object.

So if the right argument of (2015⌶) Y is the name of a matrix, the left argument X is
a matrix with as many rows as there are columns in Y. X[;1] contains the names by
which each of the columns of Y will be exported as a property, and X[;2] their data
types.

Values in the matrix may be scalar numbers, character scalars or vectors, or nested
vectors, but each column in the matrix must be uniform.

The result R is a specific type that is created dynamically and assigned a unique name
of the form Dyalog.Data.DyalogCollectionNotifyHandler`1
[Dyalog.Data.DataBoundRow_nnnnnnnn]. This is suitable for binding to a
WPF property that requires an IEnumerable implementation, such as the
ItemsSource property of the DataGrid.

Chapter 3: The I-Beam Operator 230

Example
mat is a matrix of numbers and is bound with default property/column names
Column1, Column2, ... Column10 and the default data type of System.Object.

mat←?20 10⍴100
bindSource←2015⌶'mat'

Example
winelist is a matrix whose first column contains a list of wines, and whose
second column their prices. The left argument is a matrix. Its first column specifies
the property names by which the columns will be exported ('Name' and 'Price')
and its second column, their data types (System.Object)

winelist←Wines,[1.5]0.01×10000+?(⍴Wines)⍴10000
info←(⍪'Name' 'Price'),⊂Object

bindSource←info(2015⌶)'winelist'

Example
emp is a 3-column matrix which contains names, numbers and addresses. Each
address is made up of two character vectors containing street and town

emp
┌───────────────────┬──────────────────┬────────────────────┐
│John Smith │Mary White │T.W. Penk │
├───────────────────┼──────────────────┼────────────────────┤
│1 │2 │3 │
├───────────────────┼──────────────────┼────────────────────┤
│┌─────────┬───────┐│┌──────────┬─────┐│┌──────────┬───────┐│
││2 East Rd│Headley│││42 High St│Alton│││23 West St│Farnham││
│└─────────┴───────┘│└──────────┴─────┘│└──────────┴───────┘│
└───────────────────┴──────────────────┴────────────────────┘

schema
┌───────┬────────────────────────┐
│Name │(System.Object) │
├───────┼────────────────────────┤
│Number │(System.Object) │
├───────┼────────────────────────┤
│Address│┌──────┬───────────────┐│
│ ││Street│(System.Object)││
│ │├──────┼───────────────┤│
│ ││Town │(System.Object)││
│ │└──────┴───────────────┘│
└───────┴────────────────────────┘

bindSource←schema(2015⌶)'emp'

Chapter 3: The I-Beam Operator 231

Notification Events
The object R generates notification events when the value(s) of the Binding Source
are updated as the contents of the Binding Target are changed by the user. These
events are generated after the data has changed and there is no mechanism to prevent
the change from occurring.

There are two types of event; ElementChanged and CellsChanged. The
CellsChanged event applies only to a data bound matrix; the ElementChanged event
applies to all other types of binding.

The event message supplied as the right argument to your callback function, is a 2-
element vector as follows :

[1] Object ref

[2] EventArgs ref

EventArgs is an instance of the internal class
Dyalog.Data.ElementChangedEventArgs or
Dyalog.Data.CellsChangedEventArgs whose fields are described below:

Dyalog.Data.ElementChangedEventArgs fields

Indices

An indication of which member has changed. Typically this will
either be ¯1 to indicate that the indices are unavailable or a scalar
value indicating (origin 0), which element of an array has been
modified or added.

Name
The name of the variable that has been modified. This is
especially useful when the datasource corresponds to a
namespace.

Path

A path used to locate the variable that has been modified. This is
especially useful when the datasource corresponds to a deeply
nested namespace, where the value changed is an element of an
array inside a namespace which is itself an element of an array
within the datasource.

Chapter 3: The I-Beam Operator 232

Dyalog.Data.CellsChangedEventArgs fields
Path Identifies the cell or row that was changed. See below.

SourceName
The name of the matrix that was specified as the right
argument to 2015⌶.

Reason
A character vector that describes what in the matrix has
changed is 'RowDeleted', 'CellChanged' or
'RowInserted'

Value The new value in the cell or ⎕NULL

If Reason is 'CellChanged', Path is the row and column number (in origin 0) of
the cell that was changed and Value is its new value.

If Reason is 'RowDeleted' or 'RowInserted', Path is the number of the row
that has been added or removed (in origin 0) and Value is ⎕NULL.

Chapter 3: The I-Beam Operator 233

Create .NET Delegate R←2016⌶Y

Windows only.

.NET methods (and properties) may specify a parameter to be a delegate. A delegate
is a place holder for a function, normally with a particular signature and result type,
that should be supplied when the method is called. Sometimes the signature of a
.NET method that takes a delegate as a parameter does not provide enough
information for Dyalog to determine automatically what type of delegate is required.
2016⌶ allows you to specify the type so that Dyalog can perform the necessary
conversion(s) at run-time.

Y is a 2-element array. The first element is a .NET type that inherits from the abstract
.NET Class System.Delegate. The second item is either the name of or the ⎕OR
of an APL function which is to be invoked via a .NET method or property.

The result R is a ref to an instance of a .NET type specified by the first element of Y,
which internally is associated with the function identified by the second element of
Y.

Example
∇foo∇

∇ foo(ev arg)
[1] ⍝ Callback for .NET method

∇
⎕USING←'System'
del←2016⌶ EventHandler'foo'
del

System.EventHandler

Then, when calling a .NET method that requires a Delegate of type
System.Eventhandler, but whose signature is imprecise in this respect, the
object del should be used instead.

Chapter 3: The I-Beam Operator 234

Identify .NET Type R←2017⌶Y

Windows only.

Returns the .NET Type of a named .NET class that is loaded in the current
AppDomain. Note that System.Type.GetType requires the fully qualified name,
i.e. prefixed by the assembly name, whereas (2017⌶) does not.

Y is a character string containing the name of a .NET object. Unless the fully
qualified name is given, the namespaces in the current AppDomain are searched in
the order they are specified by ⎕USING or :Using.

If the object is identified in the current AppDomain, the result R is its Type. If not,
the function generates DOMAIN ERROR.

Example
⎕USING←'System'
2017⌶'DateTime'

System.DateTime

Flush Session Caption R←2022⌶Y

Windows only.

UnderWindows, the Session Caption displays information such as the name of the
current workspace. The contents of the Caption can be modified: seeWindow
Captions in the Installation and Configuration Guide for more details.

However, the Caption is updated only at the six-space prompt; calling ⎕LOAD for
example fromwithin a function will not result in the Caption being updated at the
end of the ⎕LOAD.

This I-Beam causes the Session Caption to be updated (flushed) when called. Note
that this I-Beam does not alter the contents of the Caption.

Example
2022⌶0

Chapter 3: The I-Beam Operator 235

Close All Windows R←2023⌶Y

UnderWindows the option,Windows -> Close All Windows allows the user to close
all open Editor and TracerWindows, but does not reset the state indicator.

This I-beammimics this behaviour, thus allowing the user to write code which can
close all windows before attempting to save the workspace; with the exception of
calling 0 ⎕SAVE it is not possible to save a workspace if any editor or tracer
windows are open.

Under non-Windows operating systems this is the only mechanism for closing all
such windows. This I-beam is effective in RIDE too.

Example
2023⌶0

Set Dyalog Pixel Type R←2035⌶Y

Windows only.

Determines how Coord 'Pixel' is interpreted. This is determined initially by the
value of the DYALOG_PIXEL_TYPE parameter and, when altered by this function,
applies to all subsequent GUI operations.

Y is a character vector that is either 'ScaledPixel' or 'RealPixel'. Any other
value will cause a DOMAIN ERROR.

The result R is the previous value.

Example
2035⌶'ScaledPixel'

RealPixel
2035⌶'RealPixel'

ScaledPixel

2035⌶'realpixel'
DOMAIN ERROR

2035⌶'realpixel'
∧

Chapter 3: The I-Beam Operator 236

Override COM Default Value R←{X}(2041⌶)Y

Windows only.

Certain COM objects, for example, VT_BLOBs, cannot be represented in APL or
may be in error. By default Dyalog will generate a DOMAIN ERROR in these cases.
For COM objects of type VT_EMPTY the interpreter by default returns ⎕NULL.

2041⌶ allows the APL programmer to specify what is returned by the interpreter in
these cases.

Ymay be 1 or 2.

If Y is 1, then X specifies the value that is returned instead of ⎕NULL when the COM
object is of type VT_EMPTY.

If Y is 2, then X specifies the value that is returned when the COM object is in error,
or is of a type that cannot be represented in APL.

In both cases, omitting X results in the default behaviour being restored.

R is the previous value specified; if there was no previous value then this function
will perform its task but generate a VALUE ERROR.

Export To Memory R←2100⌶Y

Windows only.

This function exports the current active workspace as an in-memory .NET Assembly.

Ymay be any array and is ignored.

The result R is 1 if the operation succeeded or 0 if it failed.

Chapter 3: The I-Beam Operator 237

Close .NET AppDomain R←2101⌶Y

Windows only.

This function closes the current .NET AppDomain.

Ymay be any array and is ignored.

The result R is 0 if the operation succeeded or a non-zero integer if it failed.

This I-Beam is very likely to be changed in future.

Set Workspace Save Options R←2400⌶Y

This function sets a flag in the workspace that determines what happens when it is
saved. The flag itself is part of the workspace and is saved with it.

If the flag is set, all Trace, Stop and Monitor settings will be cleared whenever the
workspace is saved, whether by)SAVE, ⎕SAVE or by File/Save from the Session
menubar.

Ymust be 1 (set the flag) or 0 (clear the flag).

The result R is the previous value of the flag.

This function may be extended in the future and a left-argument may be added.

Example
(2400⌶)1

0
)SAVE

0 Trace bits cleared.
3 Stop bits cleared.
0 Monitor bits cleared.
temp saved Sat Apr 05 17:01:30 2014

Chapter 3: The I-Beam Operator 238

Expose Root Properties R←2401⌶Y

This function is used to expose or hide Root Properties, Event and Methods.

If Y is 1, Root Properties, Events and Methods are exposed.

If Y is 0, no further Root Properties, Events or Methods are exposed; however any
that have already been exposed will remain so.

This functionality is available in Windows versions by selecting or unselecting the
Expose Root PropertiesMenuItem in the OptionsMenu in the Session. Note that
deselecting this MenuItem only affects future references to Root Properties, Events or
Methods.

This function is the only mechanism available under non-Windows versions of
Dyalog APL; the state of this setting is saved in the workspace, and therefore cannot
be controlled by an environment variable.

Example
#.GetEnvironment'MAXWS'

VALUE ERROR
#.GetEnvironment'MAXWS'

∧

2401⌶1
0

#.GetEnvironment'MAXWS'
64M

2401⌶0
1

#.GetEnvironment'MAXWS'
64M

#.GetCommandLine
VALUE ERROR

#.GetCommandLine
∧

Chapter 3: The I-Beam Operator 239

Discard Thread on Exit R←2501⌶Y

APL threads that Dyalog creates to serve incoming .NET requests are not terminated
when their work is done. They persist so that if another call comes in on the same
.NET thread the same APL thread can handle it. In effect the thread is parked until it
is needed again. If the thread is not required, there is a small performance cost in
maintaining it in this state.

(2501⌶0)must be called fromWITHIN one of these threads and tells the
interpreter NOT to park the thread on termination, but to discard the thread
completely.

Discard Parked Threads R←2502⌶Y

APL threads that Dyalog creates to serve incoming .NET requests are not terminated
when their work is done. They persist so that if another call comes in on the same
.NET thread the same APL thread can handle it. In effect the thread is parked until it
is needed again. If the thread is not required, there is a small performance cost in
maintaining it in this state.

(2502⌶0) removes all parked threads from the workspace.

Chapter 3: The I-Beam Operator 240

Mark Thread as Uninterruptible R←2503⌶Y

This function marks the current thread (the thread in which it is called) as
uninterruptible, and/or determines whether or not any child threads, subsequently
created by the current thread, will be uninterruptible.

The right argument Y is an integer whose value is the sum of the following (bit-wise)
values:

l 1 : mark thread as uninterruptible
l 2 : mark its children as uninterruptible

The result R is an integer value that indicates the previous state of the thread.

In many multi-threaded applications a large proportion of the threads are used for
communication mechanisms (⎕DQ on TCPSockets, Conga, isolates); but most of the
"real work" is done in thread zero.

It is undesirable that a weak interrupt interrupts a seemingly random thread. The
mechanism to prevent a thread from being (weak) interrupted allows an application
to be configured so that only specific threads would respond to a weak interrupt.

Chapter 3: The I-Beam Operator 241

Use Separate Thread For .NET R←2520⌶Y

This function determines the way that .NET calls are executed in APL thread 0.

The right argument Y is a Boolean value:

l 1 : run .NET calls in a separate system thread
l 0 : run .NET calls in the same system thread

The result R is a Boolean value which indicates the previous behaviour.

When an APL thread first makes a .NET call, it creates a unique system thread in
which that and subsequent .NET calls are made. If a .NET call results in the creation
of a message queue, that queue is associated with that same system thread. So each
message queue is also unique. This strategy successfully maintains separation
between multiple Windows message queues being executed in different APL threads.

By default, the base APL thread (thread 0) runs .NET code in the same system thread
as itself. This is a different system thread to that used to run .NET code from other
APL threads, so the separation between message queues associated with APL thread
0 and those associated with other APL threads is maintained. However, in certain
circumstances, messages generated by .NET objects interfere with APL's internal
message processing (and vice-versa), for example when handling exceptions.

For this reason, Dyalog recommends that APL code that creates instances of .NET
objects that generate events (such as Windows Presentation Foundation objects) are
run in a separate APL thread.

Where this is not possible, 2520⌶1may be used to force Dyalog to use a unique
system thread for .NET that is associated with APL thread 0. If so, it is recommended
that 2520⌶1 is called at application start-up time.

Chapter 3: The I-Beam Operator 242

Continue Autosave {R}←2704⌶Y

This function enables or disables the automatic saving of a CONTINUE workspace
when Dyalog exits. By default this is disabled when Dyalog starts and must be
explicitly enabled using this function.

Y is an integer defined as follows:

Value Description

0 Disable the automatic saving of a CONTINUE workspace.

1
Enable the automatic saving of a CONTINUE workspace. This
setting applies only to the current session or until disabled by
2704⌶0.

The shy result R is the previous value of this setting.

Circumstances when Dyalog automatically saves a CONTINUE workspace include:

l a run-time violation. This is most frequently caused by an untrapped
APL error which causes Dyalog to return to session-input mode (i.e. an
application programming fault).

l a hang-up signal.

Disable Component Checksum Validation {R}←3002⌶Y

Checksums allow component files to be validated and repaired using ⎕FCHK.

FromVersion 13.1 onwards, components which contain checksums are also
validated on every component read.

Although not recommended, applications which favour performance over security
may disable checksum validation by ⎕FREAD using this function.

Y is an integer defined as follows:

Value Description

0 ⎕FREAD will not validate checksums.

1 ⎕FREAD will validate checksums when they are present. This is the
default.

The shy result R is the previous value of this setting.

Chapter 3: The I-Beam Operator 243

Send Text to RIDE-embedded Browser R←{X}(3500⌶)Y

Optionally, X is a simple character vector or scalar, the contents of which are used as
the caption for the tab in the RIDE client that contains the embedded browser. If
omitted, then the caption defaults to "3500⌶".

Y is a simple character vector the contents of which are displayed in the embedded
browser tab.

To include SVG content, the HTML text in Ymust include the following:

<meta http-equiv="X-UA-Compatible" content="IE=9" >.

The result R identifies whether the write to the RIDE was successful. Possible values
are:

l 0 : the write to the RIDE client was successful
l ¯1 : the write to the RIDE client was not successful

Connected to the RIDE R←(3501⌶)Y

Y can be any value and is ignored.

The result R identifies whether the Dyalog Session is running through the RIDE.
Possible values are:

l 0 : the Session is not running through the RIDE
l 1 : the Session is running through the RIDE

This I-Beammay be extended in future.

Chapter 3: The I-Beam Operator 244

Manage RIDE Connections R←3502⌶Y

3502⌶ gives control over RIDE connections to the interpreter. More details about
RIDE can be found in the RIDE User Guide.

Ymay be either 0 or 1 or a simple character vector.

R has the value 0 if the call to 3502⌶ was successful; if unsuccessful the value may
be either a positive or negative integer.

If Y is 0, then any active RIDE connections are disconnected, and no future
connections may be made.

If Y is 1, then the interpreter attempts to enable RIDE, using the value of the
initialisation string to determine the connection details. If the current initialisation
string is ill-defined, R will be 64. If the Conga DLL/shared libraries are not available,
R will be 32. In previous versions of Dyalog there were separate RIDE and Conga
DLLs/shared libraries; these have been merged into one set in 16.0.

If Y is a character vector and RIDE is currently disabled, then the current
initialisation string is unconditionally replaced by the contents of Y. If RIDE is
currently enabled, the initialisation string is not replaced, and R will have the value
¯2.

The initialisation string has the same syntax as the value of the RIDE_INIT
configuration parameter which is described in the RIDE User Guide

If RIDE is currently disabled, and 3502⌶0 is called or if RIDE is currently enabled
and 3502⌶1 is called, no action is taken and R will have the value ¯1.

The configuration parameterRIDE_INIT can still be used to establish the initial
value of the RIDE initialisation string.

The runtime interpreter has RIDE disabled by default, whether or not RIDE_INIT is
set; the only method of enabling RIDE in a runtime interpreter is to call 3502⌶1.

IfRIDE_INIT is set when a development interpreter is called, RIDE will be enabled
provided that the RIDE DLL/shared library is available and the RIDE_INIT variable
is properly formed. If the connection is of type SERVE the port must not be in use. If
any of these conditions are not met, then the interpreter fails with a non-zero exit
code. IfRIDE_INIT is not set then the development interpreter will start, but with
RIDE disabled. It is therefore possible to override the RIDE_INIT variable in the
development interpreter with code similar to:

r←3502⌶0 ⍝ Stop RIDE
r←3502⌶'SERVE::4511' ⍝ Update init string
r←3502⌶1 ⍝ Start RIDE

And similarly for altering the RIDE settings in an active APL session.

Chapter 3: The I-Beam Operator 245

Notes:
In 14.1 and earlier 3502⌶⍬ was used to enable RIDE; this value is still valid, albeit
deprecated: code should call 3502⌶1 instead.

Enabling the RIDE to access applications that use the run-time interpreter means that
the APL code of those applications can be accessed. The I-beammechanism
described above means that the APL code itself must grant the right for a RIDE client
to connect to the run-time interpreter. Although Dyalog Ltd might change the details
of this mechanism, the APL code will always need to grant connection rights. In
particular, no mechanism that is only dependent on configuration parameters will be
implemented.

Chapter 3: The I-Beam Operator 246

Fork New Task R←4000⌶Y

This applies to AIX only.

Ymust be is a simple empty vector but is ignored.

This function forks the current APL task. This means that it initiates a new separate
copy of the APL program, with exactly the same APL state indicator.

Following the execution of this function, there will be two identical APL processes
running on the machine, each with the same state indicator and set of APL objects
and values. However, none of the external interfaces and resources in the parent
process will exist in the newly forked child process.

The function will return a result in both processes.

l In the parent process, R is the process id of the child (forked) process.
l In the child process, R is a scalar zero.

The following external interfaces and resources that may be present in the parent
process are not replicated in the child process:

l Component file ties
l Native file ties
l Mapped file associations
l Auxiliary Processors
l .NET objects
l Edit windows
l Clipboard entries
l GUI objects (all children of '.')
l I/O to the current terminal

Note that External Functions established using ⎕NA are replicated in the child
process.

The function will fail with a DOMAIN ERROR if there is more than one APL thread
running.

The function will fail with a FILE ERROR 11 Resource temporarily
unavailable if an attempt is made to exceed the maximum number of processes
allowed per user.

Chapter 3: The I-Beam Operator 247

Change User R←4001⌶Y

UNIX, Linux and macOS only.

Y is a character vector that specifies a valid UNIX user name. The function changes
the userid (uid) and groupid (gid) of the process to values that correspond to the
specified user name.

Note that it is only possible to change the user name if the effective uid is 0 (that is,
the process has root privileges).

If the operation is successful, R is the user name specified in Y. Note that the value of
⎕AN will not be affected, but the value of ⊃⎕AI will be.

If the operation fails, the function generates a FILE ERROR 1 Not Owner error.

If the argument to 4001⌶ is other than a non-empty simple character vector, the
function generates a DOMAIN ERROR.

If the argument is not the name of a valid user the function generates a FILE ERROR
3 No such process.

If the argument is the same name as the current effective user, then the function
returns that name, but has no effect.

If the argument is a valid name other than the name of the effective user id of the
current process, and that effective user id is not root the function generates a FILE
ERROR 1 Not owner.

Chapter 3: The I-Beam Operator 248

Reap Forked Tasks R←4002⌶Y

This applies to AIX only.

Under UNIX, when a child process terminates, it signals to its parent that it has
terminated and waits for the parent to acknowledge that signal. 4002⌶ is the
mechanism to allow the APL programmer to issue such acknowledgements.

Ymust be a simple empty vector but is ignored.

The result R is a matrix containing the list of the newly-terminated processes which
have been terminated as a result of receiving the acknowledgement, along with
information about each of those processes as described below.

R[;1] is the process ID (PID) of the terminated child

R[;2] is ¯1 if the child process terminated normally, otherwise it is the signal
number which caused the child process to terminate.

R[;3] is ¯1 if the child process terminated as the result of a signal, otherwise it is
the exit code of the child process

The remaining 15 columns are the contents of the rusage structure returned by the
underlying wait3() system call. Note that the two timevalstructs are each
returned as a floating point number.

The current rusage structure contains:

struct rusage {
struct timeval ru_utime; /* user time used */
struct timeval ru_stime; /* system time used */
long ru_maxrss; /* maximum resident set size */
long ru_ixrss; /* integral shared memory size */
long ru_idrss; /* integral unshared data size */
long ru_isrss; /* integral unshared stack size */
long ru_minflt; /* page reclaims */
long ru_majflt; /* page faults */
long ru_nswap; /* swaps */
long ru_inblock; /* block input operations */
long ru_oublock; /* block output operations */
long ru_msgsnd; /* messages sent */
long ru_msgrcv; /* messages received */
long ru_nsignals; /* signals received */
long ru_nvcsw; /* voluntary context switches */
long ru_nivcsw; /* involuntary context switches */

};

Chapter 3: The I-Beam Operator 249

4002⌶may return the PID of an abnormally terminated Auxiliary Processor; APL
code should check that the list of processes that have been reaped is a superset of the
list of processes that have been started.

Example
∇ tryforks;pid;fpid;rpid

[1] rpids←fpids←⍬
[2] :For i :In ⍳5
[3] fpid←4000⌶'' ⍝ fork() a process
[4] ⍝ if the child, hang around for a while
[5] :If fpid=0
[6] ⎕DL 2×i
[7] ⎕OFF
[8] :Else
[9] ⍝ if the parent, save child's pid
[10] +fpids,←fpid
[11] :EndIf
[12] :EndFor
[13]
[14] :For i :In ⍳20
[15] ⎕DL 3
[16] ⍝ get list of newly terminated child processes
[17] rpid←4002⌶''
[18] ⍝ and if not empty, make note of their pids
[19] :If 0≠⊃⍴rpid
[20] +rpids,←rpid[;1]
[21] :EndIf
[22] ⍝ if all fork()'d child processes accounted for
[23] :If fpids≡fpids∩rpids
[24] :Leave ⍝ quit
[25] :EndIf
[26] :EndFor

∇

Chapter 3: The I-Beam Operator 250

Signal Counts R←4007⌶Y

UNIX, Linux and macOS only.

Ymust be a simple empty vector but is ignored.

The result R is an integer vector of signal counts. The length of the vector is system
dependent. On AIX 32-bit it is 63 on AIX 64-bit it is 256 but code should not rely on
the length.

Each element is a count of the number of signals that have been generated since the
last call to this function, or since the start of the process. R[1] is the number of
occurrences of signal 1 (SIGHUP), R[2] the number of occurrences of signal 2, and
so forth.

Each time the function is called it zeros the counts; it is therefore inadvisable to call
it in more than one APL thread.

Currently, only SIGHUP, SIGINT, SIGQUIT, SIGTERM and SIGWINCH are
counted and all other corresponding elements of R are 0.

Chapter 3: The I-Beam Operator 251

List Loaded Files R←5176⌶Y

The editor may be used to edit Dyalog script files (.dyalog files) and general text files
and to save the contents in the workspace. Additionally ⎕FIX can be used to fix
scripts held in files. This I-Beam returns a list of all of the files which are associated
with objects in the workspace, together with information about each file.

Y may be any value.

R is a vector of vectors, one element per associated file. Each element is a 5 element
vector:

Element Contains

1 File name

2 Encoding

3 Checksum

4 Newline

5 Flags

Encoding, newline and flags are defined the same as for ⎕NGET. See File Encodings
on page 464. Checksum is an 8-character hexadecimal value, see Object Reference
Guide: GetBuildID Method for more information.

Examples:
)CLEAR

clear ws
('' '' (8⍴'0') ⍬ 0)≡⊃5176⌶''

1
dyalog←2 ⎕NQ '.' 'GetEnvironment' 'DYALOG'
aedit←'/SALT/spice/aedit.dyalog'
⎕FIX 'file:///',dyalog,aedit

#.arrayeditor

1↓⊃5176⌶⍬ ⍝ Ignore filename
UTF-8-BOM 18507aa6 13 10 0

Chapter 3: The I-Beam Operator 252

List Loaded File Objects R←5177⌶Y

The editor may be used to edit Dyalog script files (.dyalog files) and general text files
and to save the contents in the workspace. Additionally ⎕FIX can be used to fix
scripts held in files. This I-Beam returns details about all of the objects in the
workspace that are associated with such files.

Y must be an empty array.

R is a vector of 8-element vectors, one vector per object in the workspace that is
associated with a file.

Element Contains

1 Object name or ref (refs are returned for all types of namespace)

2 Parent namespace

3 Name class (see ⎕NC)

4 File name

5 Start line (first line in file, 0 origin, of the object)

6 Line count (number of lines in file occupied by the object)

7 File Checksum

8 File modification time (⎕TS format)

If an object occupies a file in its entirety, both Start line and Line count will be 0.

Examples:
)CLEAR

clear ws
⊃5177 ⌶⍬

┌┬──────┬─┬┬─┬─┬────────┬────────────────┐
││[Null]│0││0│0│00000000│1970 1 1 0 0 0 0│
└┴──────┴─┴┴─┴─┴────────┴────────────────┘

Chapter 3: The I-Beam Operator 253

dyalog←2 ⎕NQ '.' 'GetEnvironment' 'DYALOG'
aedit←'/SALT/spice/aedit.dyalog'
⊢⎕FIX 'file://',dyalog,aedit

#.arrayeditor

1 1 1 0 1 1 1 1/↑5177⌶⍬ ⍝remove file names for brevity
┌─────────────┬─────────────┬─┬──┬──┬────────┬───────────────────┐
│Run │#.arrayeditor│3│38│4 │008fe4ed│2018 5 11 8 56 10 0│
├─────────────┼─────────────┼─┼──┼──┼────────┼───────────────────┤
│Help │#.arrayeditor│3│28│9 │008fe4ed│2018 5 11 8 56 10 0│
├─────────────┼─────────────┼─┼──┼──┼────────┼───────────────────┤
│List │#.arrayeditor│3│22│5 │008fe4ed│2018 5 11 8 56 10 0│
├─────────────┼─────────────┼─┼──┼──┼────────┼───────────────────┤
│DESC │#.arrayeditor│3│10│11│008fe4ed│2018 5 11 8 56 10 0│
├─────────────┼─────────────┼─┼──┼──┼────────┼───────────────────┤
│#.arrayeditor│# │9│0 │0 │008fe4ed│2018 5 11 8 56 10 0│
└─────────────┴─────────────┴─┴──┴──┴────────┴───────────────────┘

Remove Loaded File Object Info R←5178⌶Y

The editor may be used to edit Dyalog script files (.dyalog files) and general text files
and to save the contents in the workspace. Additionally ⎕FIX can be used to fix
scripts held in files. This I-Beam removes the information held about an object in the
workspace specified by Y that is associated with such a file.

Y is a character vector that specifies the name of a workspace object or a ref to an
object.

R is Boolean. 1 means that the information was removed; 0 that it wasn't.

Note that the workspace object itself remains in the workspace; just the information
about its associated file is removed.

Examples:
dyalog←2 ⎕NQ '.' 'GetEnvironment' 'DYALOG'
aedit←'/SALT/spice/aedit.dyalog'
⊢⎕FIX 'file://',dyalog,aedit

#.arrayeditor
5178⌶'arrayeditor'

1
5178⌶'xyz' ⍝ unused name

0

Chapter 3: The I-Beam Operator 254

Loaded File Object Info R←5179⌶Y

The editor may be used to edit Dyalog script files (.dyalog files) and general text files
and to save the contents in the workspace. Additionally ⎕FIX can be used to fix
scripts held in files. This I-Beam returns details about an object in the workspace
specified by Y that is associated with such a file.

Y is a character vector that specifies the name of a workspace object or a ref to an
object.

R is an 8-element vector containing the following information pertaining to the
object and

Element Contains

1 Object name or ref (Y)

2 Parent namespace

3 Name class (see ⎕NC)

4 File name

5 Start line (first line in file, 0 origin, of the object)

6 Line count (number of lines in file occupied by the object)

7 File Checksum

8 File modification time (⎕TS format)

If an object occupies a file in its entirety, both Start line and Line count are 0.

Examples:
dyalog←2 ⎕NQ '.' 'GetEnvironment' 'DYALOG'
aedit←'/SALT/spice/aedit.dyalog'
⊢⎕FIX 'file://',dyalog,aedit

#.arrayeditor
1 1 1 0 1 1 1 1/ 5179⌶'arrayeditor'

┌─────────────┬─┬─┬─┬─┬────────┬───────────────────┐
│#.arrayeditor│#│9│0│0│008fe4ed│2018 5 11 8 56 10 0│
└─────────────┴─┴─┴─┴─┴────────┴───────────────────┘

1 1 1 0 1 1 1 1/ 5179⌶'arrayeditor.List'
┌────┬─────────────┬─┬──┬─┬────────┬───────────────────┐
│List│#.arrayeditor│3│22│5│008fe4ed│2018 5 11 8 56 10 0│
└────┴─────────────┴─┴──┴─┴────────┴───────────────────┘

5179⌶'xyz' ⍝ unused name
┌┬──────┬─┬┬─┬─┬────────┬────────────────┐
││[Null]│0││0│0│00000000│1970 1 1 0 0 0 0│
└┴──────┴─┴┴─┴─┴────────┴────────────────┘

Chapter 3: The I-Beam Operator 255

JSON Translate Name R←X(7162⌶)Y

Converts between JSON names and APL names.

When ⎕JSON imports an entity from JSON text whose name would be an invalid
APL name, the function converts the invalid name into a valid APL name using a
name mangling algorithm.When ⎕JSON exports an APL namespace as JSON text,
the process is reversed.

This function performs the same name mangling allowing the programmer to identify
JSON entities as APL names, and vice-versa.

Y is a character vector or scalar.

X is a scalar numeric value which must be 1 or 0.

When X is 0, R is the name in Y converted, if necessary, so that it is a valid APL
name. It performs the same translation of JSON object names to APL names that is
performed when importing JSON.

When X is 1, R is the name in Y which, if mangled, is converted back to the original
form.. It performs the same translation of APL names to JSON object names that is
performed when exporting JSON.

Examples:
0(7162⌶)'2a'

⍙2a
1(7162⌶)'⍙2a'

2a

0(7162⌶)'foo'
foo

1(7162⌶)'foo'
foo

Note that the algorithm can be applied, even when mangling is not required. So:

1(7162⌶)'⍙97'
a

For further details, see JSON Name Mangling on page 399.

Chapter 3: The I-Beam Operator 256

Singular Value Decomposition R←(8415⌶)Y

Y is a simple numeric matrix.

The result R is a 4 element vector whose elements are as follows.

[1] U a unitary matrix

[2] S a diagonal matrix

[3] V a unitary matrix

[4] f
a Boolean flag indicating whether the algorithm converged (1)or not
(0)

This function computes a factorisation of the matrix Y such that:

Y ≡ U +.× S +.× ⍉+V

This can be useful for analysing matrices for which ⌹ cannot compute an inverse,
because they are singular or nearly singular.

For further information, see https://en.wikipedia.org/wiki/Singular_value_
decomposition.

https://en.wikipedia.org/wiki/Singular_value_decomposition
https://en.wikipedia.org/wiki/Singular_value_decomposition

Chapter 3: The I-Beam Operator 257

Line Count R←50100⌶Y

This function is a compact version of the system function ⎕LC. If an expression
requires only the most recent line(s) in the function calling stack, this is a more
efficient alternative to using ⎕LC.

Ymay be an integer specifying the depth of the function calling stack that is required
in the result.

The result R is the same as ⎕LC, but truncated to the number of stack levels specified
by Y.

Example
∇ Foo

[1] :If 4=⍴⎕LC
[2] 50100⌶0
[3] 50100⌶1
[4] 50100⌶2
[5] 50100⌶3
[6] 50100⌶4
[7] 50100⌶5
[8] →
[9] :Else
[10] Foo
[11] :EndIf

∇

Foo

3
4 10
5 10 10
6 10 10 10
7 10 10 10

Chapter 3: The I-Beam Operator 258

Other I-Beams
Dyalog APL includes a number of I-Beams which exist in order to support
experimental features or features which are documented elsewhere.

The following table lists those I-Beams, together with the document which contains
a description of them:

Table 13: Experimental and other I-Beams

A Purpose Where
documented

8659 Shared Code Files. These are supported only in 64-bit
Unicode interpreters, and were previously known as
External Workspaces

Shared Code
Files User
Guide

8666

8667

Chapter 4: System Functions 259

Chapter 4:

System Functions

Dyalog includes a collection of built-in facilities which provide various services
related to both the APL and the external environment. They have distinguished case-
insensitive names beginning with the ⎕ symbol and are implicitly available in a clear
workspace. Collectively, these facilities are referred to as System Functions but they
are variously implemented as constants, variables, functions, operators, and in one
case, as a namespace.

⍞ ⎕ ⎕Á ⎕A ⎕AI ⎕AN

⎕ARBIN ⎕ARBOUT ⎕AT ⎕AV ⎕AVU

⎕BASE ⎕CLASS ⎕CLEAR ⎕CMD ⎕CR

⎕CS ⎕CSV ⎕CT ⎕CY ⎕D

⎕DCT ⎕DF ⎕DIV ⎕DL ⎕DM

⎕DMX ⎕DQ ⎕DR ⎕ED ⎕EM

⎕EN ⎕EX ⎕EXCEPTION ⎕EXPORT ⎕FAPPEND

⎕FAVAIL ⎕FCHK ⎕FCOPY ⎕FCREATE ⎕FDROP

⎕FERASE ⎕FHIST ⎕FHOLD ⎕FIX ⎕FLIB

⎕FMT ⎕FNAMES ⎕FNUMS ⎕FPROPS ⎕FR

⎕FRDAC ⎕FRDCI ⎕FREAD ⎕FRENAME ⎕FREPLACE

⎕FRESIZE ⎕FSIZE ⎕FSTAC ⎕FSTIE ⎕FTIE

⎕FUNTIE ⎕FX ⎕INSTANCES ⎕IO ⎕JSON

⎕KL ⎕LC ⎕LOAD ⎕LOCK ⎕LX

⎕MAP ⎕MKDIR ⎕ML ⎕MONITOR ⎕NA

⎕NAPPEND ⎕NC ⎕NCOPY ⎕NCREATE ⎕NDELETE

⎕NERASE ⎕NEW ⎕NEXISTS ⎕NGET ⎕NINFO

⎕NL ⎕NLOCK ⎕NMOVE ⎕NNAMES ⎕NNUMS

Chapter 4: System Functions 260

⎕NPARTS ⎕NPUT ⎕NQ ⎕NR ⎕NREAD

⎕NRENAME ⎕NREPLACE ⎕NRESIZE ⎕NS ⎕NSI

⎕NSIZE ⎕NTIE ⎕NULL ⎕NUNTIE ⎕NXLATE

⎕OFF ⎕OPT ⎕OR ⎕PATH ⎕PFKEY

⎕PP ⎕PROFILE ⎕PW ⎕R ⎕REFS

⎕RL ⎕RSI ⎕RTL ⎕S ⎕SAVE

⎕SD ⎕SE ⎕SH ⎕SHADOW ⎕SI

⎕SIGNAL ⎕SIZE ⎕SM ⎕SR ⎕SRC

⎕STACK ⎕STATE ⎕STOP ⎕SVC ⎕SVO

⎕SVQ ⎕SVR ⎕SVS ⎕TC ⎕TCNUMS

⎕TGET ⎕THIS ⎕TID ⎕TKILL ⎕TNAME

⎕TNUMS ⎕TPOOL ⎕TPUT ⎕TRACE ⎕TRAP

⎕TREQ ⎕TS ⎕TSYNC ⎕UCS ⎕USING

⎕VFI ⎕VR ⎕WA ⎕WC ⎕WG

⎕WN ⎕WS ⎕WSID ⎕WX ⎕XML

⎕XSI ⎕XT

Chapter 4: System Functions 261

System Constants
System constants, which can be regarded as niladic system functions, return
information from the system. They have distinguished names, beginning with the
quad symbol, ⎕. A system constant may not be assigned a value. System constants
may not be localised or erased. System constants are summarised in the following
table:

Name Description

⎕Á Underscored Alphabetic upper case characters

⎕A Alphabetic upper case characters

⎕AI Account Information

⎕AN Account Name

⎕AV Atomic Vector

⎕D Digits

⎕DM Diagnostic Message

⎕DMX Extended Diagnostic Message

⎕EN Event Number

⎕EXCEPTION Reports the most recent Microsoft .NET Exception

⎕LC Line Count

⎕NULL Null Item

⎕SD Screen (or window) Dimensions

⎕TC Terminal Control (backspace, linefeed, newline)

⎕TS Time Stamp

⎕WA Workspace Available

Chapter 4: System Functions 262

System Variables
System variables retain information used by the system in some way, usually as
implicit arguments to functions.

The characteristics of an array assigned to a system variable must be appropriate;
otherwise an error will be reported immediately.

Example
⎕IO←3

DOMAIN ERROR
⎕IO←3
^

System variables may be localised by inclusion in the header line of a defined
function or in the argument list of the system function ⎕SHADOW. When a system
variable is localised, it retains its previous value until it is assigned a new one. This
feature is known as "pass-through localisation". The exception to this rule is ⎕TRAP.

A system variable can never be undefined. Default values are assigned to all system
variables in a clear workspace.

Name Description Scope

⍞ Character Input/Output Session

⎕ Evaluated Input/Output Session

⎕AVU Atomic Vector – Unicode Namespace

⎕CT Comparison Tolerance Namespace

⎕DCT Decimal Comp Tolerance Namespace

⎕DIV Division Method Namespace

⎕FR Floating-Point Representation Namespace

⎕IO Index Origin Namespace

⎕LX Latent Expression Workspace

⎕ML Migration Level Namespace

⎕PATH Search Path Session

Chapter 4: System Functions 263

Name Description Scope

⎕PP Print Precision Namespace

⎕PW Print Width Session

⎕RL Random Link Namespace

⎕RTL Response Time Limit Namespace

⎕SM Screen Map Workspace

⎕TRAP Event Trap Workspace

⎕USING Microsoft .NET Search Path Namespace

⎕WSID Workspace Identification Workspace

⎕WX Window Expose Namespace

In other words, ⎕, ⍞, ⎕PATH and ⎕PW relate to the session. ⎕LX, ⎕SM, ⎕TRAP and
⎕WSID relate to the active workspace. All the other system variables relate to the
current namespace.

Session Workspace Namespace

⍞ ⎕LX ⎕AVU

⎕ ⎕SM ⎕CT

⎕PATH ⎕TRAP ⎕DCT

⎕PW ⎕WSID ⎕DIV

⎕FR

⎕IO

⎕ML

⎕PP

⎕RL

⎕RTL

⎕USING

⎕WX

Chapter 4: System Functions 264

System Operators
The following system facilities are for convenience implemented as operators rather
than as functions:

Name Description

⎕R Replace

⎕S Search

⎕OPT Variant (Classic Edition only)

System Namespaces
⎕SE is currently the only system namespace.

Chapter 4: System Functions 265

System Functions Categorised
Dyalog includes a collection of built-in facilities which provide various services
related to both the APL and the external environment. They have distinguished case-
insensitive names beginning with the ⎕ symbol and are implicitly available in a clear
workspace. Collectively, these facilities are referred to as System Functions but they
are variously implemented as constants, variables, functions, operators, and in one
case, as a namespace.

The following tables list the system functions divided into appropriate categories.
Each is then described in detail in alphabetical order.

Settings Affecting Behaviour of Primitive Functions
Name Description

⎕CT Comparison Tolerance

⎕DCT Decimal Comp Tolerance

⎕DIV Division Method

⎕FR Floating-Point Representation

⎕IO Index Origin

⎕ML Migration Level

⎕PP Print Precision

⎕RL Random Link

The following table describes the dependencies that exist between functions,
operators and system variables.

System
Variable

Monadic
Functions Dyadic Functions Operators

⎕CT, ⎕DCT ⌈ ⌊ ∪
⍷ ≡ ≢ ∩ ∪ ~ ⍳ ∊ | < ≤ =
≥ > ≠ ∧ ∨ (non-Boolean)

⍤

⎕DIV ÷ ÷

⎕IO ⍒ ⍋ ⍳ ? ? ⍋ ⍒ ⌷ ⍳ ⊃ ⍉ ⌸ []

⎕ML ∊ ↑ ↓ ≡ ⊂[K]

⎕PP ⍕

⎕RL ? ?

Chapter 4: System Functions 266

Session Information/Management
Name Description

⎕AI Account Information

⎕AN Account Name

⎕CLEAR Clear workspace (WS)

⎕CY Copy objects into active WS

⎕DL Delay execution

⎕LOAD Load a saved WS

⎕OFF End the session

⎕PATH Search Path

⎕SAVE Save the active WS

⎕TS Time Stamp

Constants
Name Description

⎕A Alphabetic upper case characters

⎕D Digits

⎕NULL Null Item

Chapter 4: System Functions 267

Tools and Access to External Utilities
Name Description

⎕CMD
Execute the Windows Command Processor or another
program

⎕CMD Start a Windows AP

⎕CSV Comma Separated Values

⎕DR Data Representation (Monadic)

⎕DR Data Representation (Dyadic)

⎕FMT Resolve display

⎕FMT Format array

⎕JSON JSON Convert

⎕MAP Map a file

⎕NA Declare a DLL function

⎕R Replace

⎕S Search

⎕SH Execute a UNIX command or another program

⎕SH Start a UNIX AP

⎕UCS Unicode Convert

⎕USING Microsoft .NET Search Path

⎕VFI Verify and Fix numeric

⎕XML XML Convert

Chapter 4: System Functions 268

Manipulating Functions and Operators
Name Description

⎕AT Object Attributes

⎕CR Canonical Representation

⎕ED Edit one or more objects

⎕EX Expunge objects

⎕FX Fix definition

⎕LOCK Lock a function

⎕NR Nested Representation

⎕PROFILE Profile Application

⎕REFS Local References

⎕STOP Set Stop vector

⎕STOP Query Stop vector

⎕TRACE Set Trace vector

⎕TRACE Query Trace vector

⎕VR Vector Representation

Chapter 4: System Functions 269

Namespaces and Objects
Name Description

⎕BASE Base Class

⎕CLASS Class

⎕CS Change Space

⎕DF Display Format

⎕FIX Fix

⎕INSTANCES Instances

⎕NEW New Instance

⎕NS Namespace

⎕SRC Source

⎕THIS This

Input/Output
Name Description

⎕ Evaluated Input/Output

⍞ Character Input/Output

Built-in GUI and COM Support
Name Description

⎕DQ Await and process events

⎕EXPORT Export objects

⎕NQ Place an event on the Queue

⎕WC Create GUI object

⎕WG Get GUI object properties

⎕WN Query GUI object Names

⎕WS Set GUI object properties

Chapter 4: System Functions 270

Component Files
Name Description

⎕FAPPEND Append a component to File

⎕FAVAIL File system Availability

⎕FCHK File Check and Repair

⎕FCOPY Copy a File

⎕FCREATE Create a File

⎕FDROP Drop a block of components

⎕FERASE Erase a File

⎕FHIST File History

⎕FHOLD File Hold

⎕FLIB List File Library

⎕FNAMES Names of tied Files

⎕FNUMS Tie Numbers of tied Files

⎕FPROPS File Properties

⎕FRDAC Read File Access matrix

⎕FRDCI Read Component Information

⎕FREAD Read a component from File

⎕FRENAME Rename a File

⎕FREPLACE Replace a component on File

⎕FRESIZE File Resize

⎕FSIZE File Size

⎕FSTAC Set File Access matrix

⎕FSTIE Share-Tie a File

⎕FTIE Tie a File exclusively

⎕FUNTIE Untie Files

Chapter 4: System Functions 271

Native Files
Name Description

⎕MKDIR Create a directory

⎕NAPPEND Append to File

⎕NCOPY Copy files and directories

⎕NCREATE Create a File

⎕NDELETE Delete a File or Directory

⎕NERASE Erase a File

⎕NEXISTS Discover whether or not a file or directory exists

⎕NGET Read Text File

⎕NINFO
Obtain information about one or more files and/or
directories

⎕NLOCK Lock a region of a file

⎕NMOVE Move files and directories

⎕NNAMES Names of tied Files

⎕NNUMS Tie Numbers of tied Files

⎕NPARTS Split a file name into its constituent parts.

⎕NPUT Write Text File

⎕NREAD Read from File

⎕NRENAME Rename a File

⎕NREPLACE Replace data on File

⎕NRESIZE File Resize

⎕NSIZE File Size

⎕NTIE Tie a File exclusively

⎕NUNTIE Untie Files

⎕NXLATE Specify Translation Table

Chapter 4: System Functions 272

Threads
Name Description

⎕TCNUMS Thread Child Numbers

⎕TID Current Thread Identity

⎕TKILL Kill Threads

⎕TNAME Current Thread Name

⎕TNUMS Thread Numbers

⎕TSYNC Wait for Threads to Terminate

Synchronisation
Name Description

⎕TGET Get Tokens

⎕TKILL Kill Threads

⎕TPOOL Token Pool

⎕TPUT Put Tokens

⎕TREQ Token Requests

Error Handling
Name Description

⎕DMX Extended Diagnostic Message

⎕EM Event Messages

⎕EXCEPTION Reports the most recent Microsoft .NET Exception

⎕SIGNAL Signal event

⎕TRAP Event Trap

Chapter 4: System Functions 273

Stack and Workspace Information
Name Description

⎕LC Line Count

⎕LX Latent Expression

⎕NC Name Classification

⎕NL Name List

⎕NSI Namespace Indicator

⎕RSI Space Indicator

⎕SI State Indicator

⎕SHADOW Shadow names

⎕SIZE Size of objects

⎕STACK Report Stack

⎕STATE Return State of an object

⎕WA Workspace Available

⎕WSID Workspace Identification

⎕XSI Extended State Indicator

Shared Variables
Name Description

⎕SVC Set access Control

⎕SVC Query access Control

⎕SVO Shared Variable Offer

⎕SVO Query degree of coupling

⎕SVQ Shared Variable Query

⎕SVR Retract offer

⎕SVS Query Shared Variable State

Chapter 4: System Functions 274

Various Other
Name Description

⎕Á Underscored Alphabetic Characters

⎕ARBIN Arbitrary Input

⎕ARBOUT Arbitrary Output

⎕AV Atomic Vector

⎕AVU Atomic Vector - Unicode

⎕DM Diagnostic Message

⎕EN Event Number

⎕KL Key Labels

⎕PFKEY Programmable Function Keys

⎕SD Screen Dimensions

⎕SM Screen Map

⎕SR Screen Read

⎕MONITOR Monitor set

⎕MONITOR Monitor query

⎕NXLATE Specify Translation Table

⎕OPT Variant Operator

⎕OR Object Representation

⎕RTL Response Time Limit

⎕TC Terminal Control

⎕XT Associate External variable

⎕XT Query External variable

⎕WX Expose GUI property names

Chapter 4: System Functions 275

Character Input/Output ⍞

⍞ is a variable which communicates between the user's terminal and APL. Its
behaviour depends on whether it is being assigned or referenced.

When ⍞ is assigned with a vector or a scalar, the array is displayed without the
normal ending new-line character. Successive assignments of vectors or scalars to ⍞
without any intervening input or output cause the arrays to be displayed on the same
output line.

Example
⍞←'2+2' ⋄ ⍞←'=' ⋄ ⍞←4

2+2=4

Output through ⍞ is independent of the print width in ⎕PW. The way in which lines
exceeding the print width of the terminal are treated is dependent on the
characteristics of the terminal. Numeric output is formatted in the same manner as
direct output (see Programming Reference Guide: Display of Arrays).

When ⍞ is assigned with a higher-rank array, the output is displayed in the same
manner as for direct output except that the print width ⎕PW is ignored.

When ⍞ is referenced, terminal input is expected without any specific prompt, and
the response is returned as a character vector.

If the ⍞ request was preceded by one or more assignments to ⍞ without any
intervening input or output, the last (or only) line of the output characters are
returned as part of the response.

Example
mat←↑⌽⍞⍞⍞⍞⍞

Examples
⍞←'OPTION : ' ⋄ R←⍞

OPTION : INPUT

R
OPTION : INPUT

⍴R
14

Chapter 4: System Functions 276

The output of simple arrays of rank greater than 1 through ⍞ includes a new-line
character at the end of each line. Input through ⍞ includes the preceding output
through ⍞ since the last new-line character. The result from ⍞, including the prior
output, is limited to 256 characters.

A soft interrupt causes an INPUT INTERRUPT error if entered while ⍞ is awaiting
input, and execution is then suspended (unless the interrupt is trapped):

R←⍞

(Interrupt)

INPUT INTERRUPT

A time limit is imposed on input through ⍞ if ⎕RTL is set to a non-zero value:

⎕RTL←5 ⋄ ⍞←'PASSWORD ? ' ⋄ R←⍞
PASSWORD ?
TIMEOUT

⎕RTL←5 ⋄ ⍞←'PASSWORD : ' ⋄ R←⍞
^

The TIMEOUT interrupt is a trappable event.

Chapter 4: System Functions 277

Evaluated Input/Output ⎕

⎕ is a variable which communicates between the user's terminal and APL. Its
behaviour depends on whether it is being assigned or referenced.

When ⎕ is assigned an array, the array is displayed at the terminal in exactly the same
form as is direct output (see Programming Reference Guide: Display of Arrays).

Example
⎕←2+⍳5

3 4 5 6 7

⎕←2 4⍴'WINEMART'
WINE
MART

When ⎕ is referenced, a prompt (⎕:) is displayed at the terminal, and input is
requested. The response is evaluated and an array is returned if the result is valid. If
an error occurs in the evaluation, the error is reported as normal (unless trapped by a
⎕TRAP definition) and the prompt (⎕:) is again displayed for input. An EOF
interrupt reports INPUT INTERRUPT and the prompt (⎕:) is again displayed for
input. A soft interrupt is ignored and a hard interrupt reports INTERRUPT and the
prompt (⎕:) is redisplayed for input.

Examples
10×⎕+2

⎕:
⍳3

30 40 50

2+⎕
⎕:

X
VALUE ERROR

X
^

⎕:
2+⍳3

5 6 7

Chapter 4: System Functions 278

A system command may be entered. The system command is effected and the prompt
is displayed again (unless the system command changes the environment):

⍴3,⎕
⎕:

)WSID
WS/MYWORK
⎕:

)SI
⎕
⎕:

)CLEAR
CLEAR WS

If the response to a ⎕: prompt is an abort statement (→), the execution will be
aborted:

1 2 3 = ⎕
⎕:

→

A trap definition on interrupt events set for the system variable ⎕TRAP in the range
1000-1008 has no effect whilst awaiting input in response to a ⎕: prompt.

Example
⎕TRAP←(11 'C' '''ERROR''')(1000 'C' '''STOP''')

2+⎕
⎕:

(Interrupt Signal)
INTERRUPT
⎕:

'C'+2
ERROR

A time limit set in system variable ⎕RTL has no effect whilst awaiting input in
response to a ⎕: prompt.

Chapter 4: System Functions 279

Underscored Alphabetic Characters R←⎕Ⓐ

⎕Ⓐ is a deprecated feature. Dyalog strongly recommends that you move away from
the use of ⎕Ⓐ and of the underscored alphabet itself, as these symbols now constitute
the sole remaining non-standard use of characters in Dyalog applications.

In Versions of Dyalog APL prior to Version 11.0, ⎕Ⓐ was a simple character vector,
composed of the letters of the alphabet with underscores. If the Dyalog Alt font was
in use, these symbols displayed as additional National Language characters.

Version 10.1 and Earlier
⎕Ⓐ

ⒶⒷⒸⒹⒺⒻⒼⒽⒾⒿⓀⓁⓂⓃⓄⓅⓆⓇⓈⓉⓊⓋⓌⓍⓎⓏ

For compatibility with previous versions of Dyalog APL, functions that contain
references to ⎕Ⓐ will continue to return characters with the same index in ⎕AV as
before. However, the display of ⎕Ⓐ is now ⎕Á, and the old underscored symbols
appear as they did in previous Versions when the Dyalog Alt font was in use.

Current Version
⎕Á

ÁÂÃÇÈÊËÌÍÎÏÐÒÓÔÕÙÚÛÝþãìðòõ

Alphabetic Characters R←⎕A

This is a simple character vector, composed of the letters of the alphabet.

Example
⎕A

ABCDEFGHIJKLMNOPQRSTUVWXYZ

Chapter 4: System Functions 280

Account Information R←⎕AI

This is a simple integer vector, whose four elements are:

⎕AI[1] user identification.1

⎕AI[2] compute time for the APL session in milliseconds.

⎕AI[3] connect time for the APL session in milliseconds.

⎕AI[4] keying time for the APL session in milliseconds.

Elements beyond 4 are not defined but reserved.

Example
⎕AI

52 7396 2924216 2814831

1UnderWindows, this is the aplnid (network ID from configuration dialog box).
Under UNIX and Linux this is the effective UID of the account whereas ⎕AN returns
the real name.

Account Name R←⎕AN

This is a simple character vector containing the user (login) name. Under UNIX and
Linux this is the real user name, whereas ⎕AI returns the effective user id.

Example
⎕AN

Pete

⍴⎕AN
4

Chapter 4: System Functions 281

Arbitrary Input R←X ⎕ARBIN Y

This transmits a stream of 8-bit codes in Y to an output device specified by X prior to
reading from an input device specified by X.

Ymay be a scalar or a simple vector of integer numbers in the range 0-255.

Xmay take several forms:

terminate (input output) ⎕ARBIN codes
terminate input ⎕ARBIN codes

terminate
This is a numeric scalar or vector that specifies how the read operation should be
terminated.

l If it is a numeric scalar, it defines the number of bytes to be read.
l If it is a numeric vector, it defines a set of terminating bytes.
l If it is the null vector, the read terminates on Newline (10).

input
This is a simple numeric scalar that specifies the input device.

l If it is positive or zero, it represents a file descriptor that must have been
associated by the command that started Dyalog APL.

l If it is negative, it represents the tie number of a file opened by ⎕NTIE or
⎕NCREATE.

output
If specified, this is a simple numeric integer that identifies the output device.

l If it is positive or zero, it represents a file descriptor that must have been
associated by the command that started Dyalog APL.

l If it is negative, it represents the tie number of a file opened by ⎕NTIE or
⎕NCREATE.

The result R is a simple numeric vector. Each item of R is the numeric representation
of an 8-bit code in the range 0 to 255 received from the input device. The meaning
of the code is dependent on the characteristics of the input device. If a set of
delimiters was defined by terminate, the last code returned will belong to that set.

Chapter 4: System Functions 282

⎕RTL (Response Time Limit) is an implicit argument of ⎕ARBIN. This allows a time
limit to be imposed on input. If the time limit is reached, ⎕ARBIN returns with the
codes read up to that point. This does not apply underWindows.

The operation will fail with a DOMAIN ERROR if Y contains anything other than
numbers in the range 0-255, or if the current process does not have permission to read
from or write to the specified device(s).

Examples (UNIX)
)sh mkfifo ./fifo

in←'./fifo'⎕NTIE 0
out←'./fifo'⎕NTIE 0

(10 (in out))⎕ARBIN ⎕UCS ⎕D
48 49 50 51 52 53 54 55 56 57

(⍬ (in out))⎕ARBIN 10
10

⍝ cope with parity on line ending 10
((10+0 128) (in out))⎕ARBIN 10

10

Chapter 4: System Functions 283

Arbitrary Output {R}←X ⎕ARBOUT Y

This transmits a stream of 8-bit codes in Y to an output device specified by X.

Ymay be a scalar or a simple vector of integer numbers in the range 0-255.

X is a simple numeric integer that specifies the output device.

l If X is positive or zero, it represents a file descriptor that must have been
associated by the command that started Dyalog APL.

l If X is negative, it represents the tie number of a file opened by ⎕NTIE or
⎕NCREATE.

If Y is an empty vector, no codes are sent to the output device.

The shy result R is ⍬.

The operation will fail with a DOMAIN ERROR if Y contains anything other than
numbers in the range 0-255, or if the current process does not have permission to
write to the specified device.

Examples
Write ASCII digits '123' to stream 9:

9 ⎕ARBOUT 49 50 51

Write ASCII characters 'ABC' to MYFILE:

'MYFILE' ⎕NCREATE ¯1
¯1 ⎕ARBOUT 65 66 67

Append the string 'Κάλο Πάσχα' to the same file, and close it:

¯1 ⎕ARBOUT 'UTF-8' ⎕UCS'Κάλο Πάσχα'
⎕NUNTIE ¯1

Chapter 4: System Functions 284

Attributes R←{X} ⎕AT Y

Y can be a simple character scalar, vector or matrix, or a vector of character vectors
representing the names of 0 or more defined functions or operators. Used dyadically,
this function closely emulates the APL2 implementation. Used monadically, it
returns information that is more appropriate for Dyalog APL.

Y specifies one or more names. If Y specifies a single name as a character scalar, a
character vector, or as a scalar enclosed character vector, the result R is a vector. If Y
specifies one or more names as a character matrix or as a vector of character vectors R
is a matrix with one row per name in Y.

Monadic Use
If X is omitted, R is a 4-element vector or a 4 column matrix with the same number of
rows as names in Y containing the following attribute information:

R[1] or R[;1]: Each item is a 3-element integer vector representing the function
header syntax:

1 Function result
0 if the function has no result
1 if the function has an explicit result
¯1 if the function has a shy result

2 Function valence

0 if the object is a niladic function or not a function
1 if the object is a monadic function
2 if the object is a dyadic function
¯2 if the object is an ambivalent function

3 Operator valence
0 if the object is not an operator
1 if the object is a monadic operator
2 if the object is a dyadic operator

The following values correspond to the syntax shown alongside:

0 0 0 ∇ FOO
1 0 0 ∇ Z←FOO

¯1 0 0 ∇ {Z}←FOO
0 ¯2 0 ∇ {A} FOO B

¯1 1 2 ∇ {Z}←(F OP G)B

R[2] or R[;2]: Each item is the (⎕TS form) timestamp of the time the function was
last fixed.

Chapter 4: System Functions 285

R[3] or R[;3]: Each item is an integer reporting the current ⎕LOCK state of the
function:

0 Not locked

1 Cannot display function

2 Cannot suspend function

3 Cannot display or suspend

R[4] or R[;4]: Each item is a character vector - the network ID of the user who last
fixed (edited) the function.

Example
∇ {z}←{l}(fn myop)r

[1] ...

∇ z←foo
[1] ...

∇ z←{larg}util rarg
[1] ...

⎕LOCK'foo'

util2←util

]display ⎕AT 'myop' 'foo' 'util' 'util2'
.→--.
↓ .→------. .→-----------------. .→---. |
| |¯1 ¯2 1| |1996 8 2 2 13 56 0| 0 |john| |
| '~------' '~-----------------' '----' |
| .→----. .→------------. .⊖. |
| |1 0 0| |0 0 0 0 0 0 0| 3 | | |
| '~----' '~------------' '-' |
| .→-----. .→------------------. .→---. |
| |1 ¯2 0| |1996 3 1 14 12 10 0| 0 |pete| |
| '~-----' '~------------------' '----' |
| .→-----. .→-------------------. .→-----. |
| |1 ¯2 0| |1998 8 26 16 16 42 0| 0 |graeme| |
| '~-----' '~-------------------' '------' |
'∊--'

Chapter 4: System Functions 286

Dyadic Use
The dyadic form of ⎕AT emulates APL2. It returns the same rank and shape result
containing information that matches the APL2 implementation as closely as possible.

The number of elements or columns in R and their meaning depends upon the value
of X which may be 1, 2, 3 or 4.

If X is 1, R specifies valences and contains 3 elements (or columns) whose meaning is
as follows:

1 Explicit result 1 if the object has an explicit result or is a variable
0 otherwise

2 Function valence
0 if the object is a niladic function or not a function
1 if the object is a monadic function
2 if the object is an ambivalent function

3 Operator valence
0 if the object is not an operator
1 if the object is a monadic operator
2 if the object is a dyadic operator

If X is 2, R specifies fix times (the time the object was last updated) for functions and
operators named in Y. The time is reported as 7 integer elements (or columns) whose
meaning is as follows. The fix time reported for names in Y which are not defined
functions or operators is 0.

1 Year

2 Month

3 Day

4 Hour

5 Minute

6 Second

7 Milliseconds (this is always reported as 0)

Chapter 4: System Functions 287

If X is 3, R specifies execution properties and contains 4 elements (or columns) whose
meaning is as follows:

1 Displayable 0 if the object is displayable
1 if the object is not displayable

2 Suspendable 0 if execution will suspend in the object
1 if execution will not suspend in the object

3 Weak Interrupt
behaviour

0 if the object responds to interrupt
1 if the object ignores interrupt

4 (always 0)

If X is 4, R specifies object size and contains 2 elements (or columns) which both
report the ⎕SIZE of the object.

Chapter 4: System Functions 288

Atomic Vector R←⎕AV

⎕AV is a deprecated feature and is replaced by ⎕UCS.

This is a simple character vector of all 256 characters in the Classic Dyalog APL
character.

In the Classic Edition the contents of ⎕AV are defined by the Output Translate Table.

In the Unicode Edition, the contents of ⎕AV are defined by the system variable
⎕AVU.

Examples
⎕AV[48+⍳10]

0123456789

5 52⍴12↓⎕av
%'⍺⍵_abcdefghijklmnopqrstuvwxyz__¯.⍬0123456789_¤¥$£¢
∆ABCDEFGHIJKLMNOPQRSTUVWXYZ__ý·�⍙ÁÂÃÇÈÊËÌÍÎÏÐÒÓÔÕÙÚÛ
ÝÞãìðòõ{€}⊣⌷¨ÀÄÅÆ⍨ÉÑÖØÜßàáâäåæçèéêëíîïñ[/⌿\⍀<≤=≥>≠∨^
-+÷×?∊⍴~↑↓⍳○*⌈⌊∇∘(⊂⊃∩∪⊥⊤|;,⍱⍲⍒⍋⍉⌽⊖⍟⌹!⍕⍎⍫⍪≡≢óôöø"#_&'
___________@ùúû^ü`⌷¶:⍷¿¡⋄←→⍝)]��§⎕⍞⍣%'⍺⍵_abcdefghijk

Atomic Vector - Unicode ⎕AVU

⎕AVU specifies the contents of the atomic vector, ⎕AV, and is used to translate data
between Unicode and non-Unicode character formats when required, for example
when:

l Unicode Edition loads or copies a Classic Edition workspace or a
workspace saved by a Version prior to Version 12.0.

l Unicode Edition reads character data from a non-Unicode component file, or
receives data type 82 from a TCP socket.

l Unicode Edition writes data to a non-Unicode component file
l Unicode Edition reads or writes data from or to a Native File using
conversion code 82.

l Classic Edition loads or copies a Unicode Edition workspace
l Classic Edition reads character data from a Unicode component file, or
receives data type 80, 160, or 320 from a TCP socket.

l Classic Edition writes data to a Unicode component file.

⎕AVU is an integer vector with 256 elements, containing the Unicode code points
which define the characters in ⎕AV.

Chapter 4: System Functions 289

Note
In Versions of Dyalog prior to Version 12.0 and in the Classic Edition, a character is
stored internally as an index into the atomic vector, ⎕AV. When a character is
displayed or printed, the index in ⎕AV is translated to a number in the range 0-255
which represents the index of the character in an Extended ASCII font. This mapping
is done by the Output Translate Table which is user-configurable. Note that although
ASCII fonts typically all contain the same symbols in the range 0-127, there are a
number of different Extended ASCII font layouts, including proprietary APL fonts,
which provide different symbols in positions 128-255. The actual symbol that
appears on the screen or on the printed page is therefore a function of the Output
Translate Table and the font in use. Classic Edition provides two different fonts (and
thus two different ⎕AV layouts) for use with the Development Environment, named
Dyalog Std (with APL underscores) and Dyalog Alt (without APL underscores).

The default value of ⎕AVU corresponds to the use of the Dyalog AltOutput Translate
Table and font in the Classic Edition or in earlier versions of Dyalog APL.

2 13⍴⎕AVU[97+⍳26]
193 194 195 199 200 202 203 204 205 206 207 208 210
211 212 213 217 218 219 221 254 227 236 240 242 245

⎕UCS 2 13⍴⎕AVU[97+⍳26]
ÁÂÃÇÈÊËÌÍÎÏÐÒ
ÓÔÕÙÚÛÝþãìðòõ

⎕AVU can be localised, in order to make it straightforward to write access functions
which receive or read data from systems with varying atomic vectors. If you have
been using Dyalog Alt for most things but have some older code which uses
underscores, you can bring this code together in the same workspace and have it all
look "as it should" by using the Alt and Std definitions for ⎕AVU as you copy each
part of the code into the same Unicode Edition workspace.

)COPY avu.dws Std.⎕AVU
C:\Program Files\Dyalog\Dyalog APL 12.0 Unicode\ws\avu
saved Thu Dec 06 11:24:32 2007

2 13⍴⎕AVU[97+⍳26]
9398 9399 9400 9401 9402 9403 9404 9405 9406 9407 9408
9409 9410
9411 9412 9413 9414 9415 9416 9417 9418 9419 9420 9421
9422 9423

⎕UCS 2 13⍴⎕AVU[97+⍳26]
ⒶⒷⒸⒹⒺⒻⒼⒽⒾⒿⓀⓁⓂ
ⓃⓄⓅⓆⓇⓈⓉⓊⓋⓌⓍⓎⓏ

Chapter 4: System Functions 290

Rules for Conversion on Import
When the Unicode Edition imports APL objects from a non-Unicode source,
function comments and character data of type 82 are converted to Unicode. When the
Classic Edition imports APL objects from a Unicode source, this translation is
performed in reverse.

If the objects are imported from a Version 12.0 (or later) workspace (i.e. from a
workspace that contains its own value of ⎕AVU) the value of #.⎕AVU (the value of
⎕AVU in the root) in the source workspace is used. Otherwise, such as when APL
objects are imported from a pre-Version 12 workspace, from a component file, or from
a TCP socket, the local value of ⎕AVU in the target workspace is used.

Rules for Conversion on Export
When the Unicode Edition exports APL objects to a non-Unicode destination, such
as a non-Unicode Component File or non-Unicode TCPSocket Object, function
comments (in ⎕ORs) and character data of type 82 are converted to ⎕AV indices using
the local value of ⎕AVU.

When the Classic Edition exports APL objects to a Unicode destination, such as a
Unicode Component File or Unicode TCPSocket Object, function comments (in
⎕ORs) and character data of type 82 are converted to Unicode using the local value of
⎕AVU.

In all cases, if a character to be translated is not defined in ⎕AVU, a TRANSLATION
ERROR (event number 92) will be signalled.

Chapter 4: System Functions 291

Base Class R←⎕BASE.Y

⎕BASE is used to access the base class implementation of the name specified by Y.

Ymust be the name of a Public member (Method, Field or Property) that is provided
by the Base Class of the current Class or Instance.

⎕BASE is typically used to call a method in the Base Class which has been
superseded by a Method in the current Class.

Note that ⎕BASE.Y is special syntax and any direct reference to ⎕BASE on its own
or in any other context, is meaningless and causes SYNTAX ERROR.

In the following example, Class DomesticParrot derives from Class Parrot
and supersedes its Speakmethod. DomesticParrot.Speak calls the Speak
method in its Base Class Parrot, via ⎕BASE.

:Class Parrot: Bird
∇ R←Speak

:Access Public
R←'Squark!'

∇
:EndClass ⍝ Parrot

:Class DomesticParrot: Parrot
∇ R←Speak

:Access Public
R←⎕BASE.Speak,' Who''s a pretty boy, then!'

∇
:EndClass ⍝ DomesticParrot

Maccaw←⎕NEW Parrot
Maccaw.Speak

Squark!

Polly←⎕NEW DomesticParrot
Polly.Speak

Squark! Who's a pretty boy, then!

Chapter 4: System Functions 292

Class R←{X}⎕CLASS Y

Monadic Case
Monadic ⎕CLASS returns a list of references to Classes and Interfaces that specifies
the class hierarchy for the Class or Instance specified by Y.

Ymust be a reference to a Class or to an Instance of a Class.

R is a vector of vectors whose items represent nodes in the Class hierarchy of Y. Each
item of R is a vector whose first item is a Class reference and whose subsequent items
(if any) are references to the Interfaces supported by that Class.

Example 1
This example illustrates a simple inheritance tree or Class hierarchy. There are 3
Classes, namely:

Animal

Bird (derived from Animal)

Parrot (derived from Bird)

:Class Animal
...
:EndClass ⍝ Animal

:Class Bird: Animal
...
:EndClass ⍝ Bird

:Class Parrot: Bird
...
:EndClass ⍝ Parrot

⎕CLASS Eeyore←⎕NEW Animal
#.Animal

⎕CLASS Robin←⎕NEW Bird
#.Bird #.Animal

⎕CLASS Polly←⎕NEW Parrot
#.Parrot #.Bird #.Animal

⎕CLASS¨ Parrot Animal
#.Parrot #.Bird #.Animal #.Animal

Chapter 4: System Functions 293

Example 2
The Penguin Class example (see Programming Reference Guide: Penguin Class
Example) illustrates the use of Interfaces.

In this case, the Penguin Class derives from Animal (as above) but additionally
supports the BirdBehaviour and FishBehaviour Interfaces, thereby inheriting
members from both.

Pingo←⎕NEW Penguin
⎕CLASS Pingo

#.Penguin #.FishBehaviour #.BirdBehaviour #.Animal

Dyadic Case
If X is specified, Ymust be a reference to an Instance of a Class and X is a reference to
an Interface that is supported by Instance Y or to a Class upon which Instance Y is
based.

In this case, R is a reference to the implementation of Interface X by Instance Y, or to
the implementation of (Base) Class X by Instance Y, and is used as a cast in order to
access members of Y that correspond to members of Interface of (Base) Class X.

Example 1:
Once again, the Penguin Class example (see Programming Reference Guide:
Penguin Class Example) is used to illustrate the use of Interfaces.

Pingo←⎕NEW Penguin
⎕CLASS Pingo

#.Penguin #.FishBehaviour #.BirdBehaviour #.Animal

(FishBehaviour ⎕CLASS Pingo).Swim
I can dive and swim like a fish

(BirdBehaviour ⎕CLASS Pingo).Fly
Although I am a bird, I cannot fly

(BirdBehaviour ⎕CLASS Pingo).Lay
I lay one egg every year

(BirdBehaviour ⎕CLASS Pingo).Sing
Croak, Croak!

Chapter 4: System Functions 294

Example 2:
This example illustrates the use of dyadic ⎕CLASS to cast an Instance to a lower
Class and thereby access a member in the lower Class that has been superseded by
another Class higher in the tree.

Polly←⎕NEW DomesticParrot
Polly.Speak

Squark! Who's a pretty boy, then!

Note that the Speakmethod invoked above is the Speakmethod defined by Class
DomesticParrot, which supersedes the Speakmethods of sub-classes Parrot
and Bird.

You may use a cast to access the (superseded) Speakmethod in the sub-classes
Parrot and Bird.

(Parrot ⎕CLASS Polly).Speak
Squark!

(Bird ⎕CLASS Polly).Speak
Tweet, tweet!

Clear Workspace ⎕CLEAR

A clear workspace is activated, having the name CLEAR WS. The active workspace
is lost. All system variables assume their default values. The maximum size of
workspace is available.

The contents of the session namespace ⎕SE are not affected.

Example
⎕CLEAR
⎕WSID

CLEAR WS

Chapter 4: System Functions 295

Execute Windows Command {R}←⎕CMD Y

⎕CMD executes the Windows Command Processor or UNIX shell or starts another
Windows application program. ⎕CMD is a synonym of ⎕SH. Either system function
may be used in either environment (Windows or UNIX) with exactly the same effect.
⎕CMD is probably more natural for the Windows user. This section describes the
behaviour of ⎕CMD and ⎕SH underWindows. See Execute (UNIX) Command on
page 549 for a discussion of the behaviour of these system functions under UNIX.

The system commands)SH and)CMD provide similar facilities. For further
information, see Execute (UNIX) Command on page 651 and Windows Command
Processor on page 632.

Executing the Windows Command Processor
If Y is a simple character vector, ⎕CMD invokes the Windows Command Processor
(normally cmd.exe) and passes the command specified by character vector Y to it
for execution. The term command means here an instruction recognised by the
Command Processor, or the pathname of a program (with optional parameters) to be
executed by it. In either case, APL waits for the command to finish and then returns
the result R, a vector of character vectors containing its result. Each element in R
corresponds to a line of output produced by the command.

Example
Z←⎕CMD'dir'
⍴Z

12
↑Z

Volume in drive C is OS
Volume Serial Number is B438-9B76

Directory of C:\Users\Pete\Documents\Dyalog APL-64 17.0
Unicode Files

23/06/2018 15:59 <DIR> .
23/06/2018 15:59 <DIR> ..
23/06/2018 14:53 181,488 default.dlf
13/06/2018 20:13 1,262,296 def_uk.dse
14/06/2018 14:36 108,976 UserCommand20.cache

3 File(s) 1,552,760 bytes
2 Dir(s) 101,371,097,088 bytes free

If the command specified in Y already contains the redirection symbol (>) the capture
of output through a pipe is avoided and the result R is empty. If the command
specified by Y issues prompts and expects user input, it is ESSENTIAL to explicitly
redirect input and output to the console.

Chapter 4: System Functions 296

If this is done, APL detects the presence of a ">" in the command line, runs the
command processor in a visible window, and does not direct output to the pipe. If
you fail to do this your system will appear to hang because there is no mechanism for
you to receive or respond to the prompt.

Example
⎕CMD 'DATE <CON >CON'

(Command Prompt window appears)

Current date is Wed 19-07-1995

Enter new date (dd-mm-yy): 20-07-95

(COMMAND PROMPT window disappears)

Spaces in pathnames
If Y specifies a program (with or without parameters) and the pathname to the
program contains spaces, you must enclose the string in double-quotes.

For example, to start a version of Excel to which the pathname is:

C:\Program Files\Microsoft Office\OFFICE11\excel.exe

the argument to ⎕CMD should be:

⎕CMD '"c:\program files\microsoft office\office11\excel.exe"'

Double-Quote Restriction
The Windows Command Processor does not permit more than one set of double-
quotes in a command string.

The following statements are all valid:

⎕CMD 'c:\windows\system32\notepad.exe c:\myfile.txt'
⎕CMD 'c:\windows\system32\notepad.exe "c:\myfile.txt"'
⎕CMD '"c:\windows\system32\notepad.exe" c:\myfile.txt'

Whereas the next statement, which contains two sets of double-quotes, will fail:

⎕CMD '"c:\windows\system32\notepad.exe" "c:\myfile.txt"'

Such a statement can however be executed using the second form of ⎕CMD(where the
argument is a 2-element vector of character vectors) which does not use the Windows
Command Processor and is not subject to this restriction. However, the call to ⎕CMD
will return immediately, and no output from the command will be returned.

⎕CMD'"c:\windows\system32\notepad.exe" "c:\myfile.txt"' ''

Chapter 4: System Functions 297

Implementation Notes
The right argument of ⎕CMD is simply passed to the appropriate command processor
for execution and its output is received using an unnamed pipe.

By default, ⎕CMD will execute the string ('cmd.exe /c',Y); where Y is the
argument given to ⎕CMD. However, the implementation permits the use of
alternative command processors as follows:

Before execution, the argument is prefixed and postfixed with strings defined by the
APL parameters CMD_PREFIX and CMD_POSTFIX. The former specifies the name
of your command processor and any parameters that it requires. The latter specifies a
string which may be required. If CMD_PREFIX is not defined, it defaults to the
name defined by the environment variable COMSPEC followed by "/c". If
COMSPEC is not defined, it defaults to cmd.exe. If CMD_POSTFIX is not
defined, it defaults to an empty vector.

⎕CMD treats certain characters as having special meaning as follows:

marks the start of a trailing comment,

; divides the command into sub-commands,

>
if found within the last sub-command, causes ⎕CMD to use a visible
window.

If you simply wish to open a Command Prompt window, you may execute the
command as a Windows Program (see below). For example:

⎕CMD 'cmd.exe' ''

Starting a Windows Program
If Y is a 2-element vector of character vectors, ⎕CMD starts the executable program
named by Y[1] with the initial window parameter specified by Y[2]. The shy
result is an integer scalar containing the window handle allocated by the window
manager. Note that in this case APL does not wait for the program specified by Y to
finish, but returns immediately. The shy result R is the process identifier (PID).

Y[1]must specify the name or complete pathname of an executable program. If the
name alone is specified, Windows will search the following directories:

1. the current directory,
2. the Windows directory,
3. the Windows system directory,
4. the directories specified by the PATH variable,
5. the list of directories mapped in a network.

Chapter 4: System Functions 298

Note that Y[1]may contain the complete command line, including any suitable
parameters for starting the program. If Windows fails to find the executable program,
⎕CMD will fail and report FILE ERROR 2.

Y[2] specifies the window parameter and may be one of the following. If not, a
DOMAIN ERROR is reported.

'Normal'
''

Application is started in a normal window, which is given
the input focus

'Unfocused'
Application is started in a normal window, which is NOT
given the input focus

'Hidden' Application is run in an invisible window

'Minimized'
'Minimised'

Application is started as an icon which is NOT given the
input focus

'Maximized'
'Maximised'

Application is started maximized (full screen) and is given
the input focus

An application started by ⎕CMDmay ONLY be terminated by itself or by the user.
There is no way to close it from APL. Furthermore, if the window parameter is
HIDDEN, the user is unaware of the application (unless it makes itself visible) and
has no means to close it.

Examples
Path←'c:\Program Files\Microsoft Office\Office\'
⎕←⎕CMD (Path,'excel.exe') ''

33
⎕CMD (Path,'winword /mMyMacro') 'Minimized'

Executing Programs
Either form of ⎕CMDmay be used to execute a program. The difference is that when
the program is executed via the Command Processor, APL waits for it to complete
and returns any result that the program would have displayed in the Command
Window had it been executed from a Command Window. In the second case,
APL starts the program (in parallel).

Note:
This function is disabled and instead generates a DOMAIN ERROR if the RIDE_
SPAWNED parameter is non-zero. This is designed to prevent it being invoked from
a RIDE session which does not support this type of user interface. For further details,
see the RIDE User Guide.

Chapter 4: System Functions 299

Start Windows Auxiliary Processor {R}←X ⎕CMD Y

Used dyadically, ⎕CMD starts an Auxiliary Processor. The effect, as far as the APL
workspace is concerned, is identical under both Windows and UNIX, although the
method of implementation differs. ⎕CMD is a synonym of ⎕SH. Either function may
be used in either environment (Windows or UNIX) with exactly the same effect.
⎕CMD is probably more natural for the Windows user. This section describes the
behaviour of ⎕CMD and ⎕SH underWindows. See Start UNIX Auxiliary Processor
on page 550 for a discussion of the behaviour of these system functions under UNIX.

Xmust be a simple character vector containing the name (or pathname) of a Dyalog
APL Auxiliary Processor (AP). Although it is possible for users to create their own
APs, Dyalog recommends that user write their own DLLs/shared libraries instead.

Ymay be a simple character scalar or vector, or a vector of character vectors. Under
Windows the contents of Y are ignored.

⎕CMD loads the Auxiliary Processor into memory. If no other APs are currently
running, ⎕CMD also allocates an area of memory for communication between APL
and its APs.

The shy result R is the process id of the Auxiliary Processor task.

The effect of starting an AP is that one or more external functions are defined in the
workspace. These appear as locked functions and may be used in exactly the same
way as regular defined functions.

When an external function is used in an expression, the argument(s) (if any) are
passed to the AP for processing via the communications area described above. APL
halts whilst the AP is processing, and waits for a result. UnderWindows, unlike
under UNIX, it is not possible for external functions to run in parallel with APL.

Chapter 4: System Functions 300

Canonical Representation R←⎕CR Y

Ymust be a simple character scalar or vector which represents the name of a defined
function or operator.

If Y is a name of a defined function or operator, R is a simple character matrix. The
first row of R is the function or operator header. Subsequent rows are lines of the
function or operator. R contains no unnecessary blanks, except for leading
indentation of control structures, trailing blanks that pad each row, and the blanks in
comments. If Y is the name of a variable, a locked function or operator, an external
function, or is undefined, R is an empty matrix whose shape is 0 0.

Example
∇R←MEAN X ⍝ Arithmetic mean

[1] R←(+/X)÷⍴X
[2] ∇

+F←⎕CR'MEAN'
R←MEAN X ⍝ Arithmetic mean
R←(+/X)÷⍴X

⍴F
2 30

The definition of ⎕CR has been extended to names assigned to functions by
specification (←), and to local names of functions used as operands to defined
operators.

If Y is a name assigned to a primitive function, R is a one-element vector containing
the corresponding function symbol. If Y is a name assigned to a system function, R is
a one element nested array containing the name of the system function.

Examples
PLUS←+
+F←⎕CR'PLUS'

+
⍴F

1
C←⎕CR
C'C'

⎕CR
⍴C'C'

1

Chapter 4: System Functions 301

∇R←CONDITION (FN1 ELSE FN2) X
[1] →CONDITION/L1
[2] R←FN2 X ⋄ →0
[3] L1:R←FN1 X
[4] ∇

2 ⎕STOP 'ELSE'
(X≥0) ⌊ ELSE ⌈ X←¯2.5

ELSE[2]
X

¯2.5
⎕CR'FN2'

⌈
→⎕LC

¯2

If Y is a name assigned to a derived function, R is a vector whose elements represent
the arrays, functions, and operators from which Y was constructed. Constituent
functions are represented by their own ⎕CRs, so in this respect the definition of ⎕CR
is recursive. Primitive operators are treated like primitive functions, and are
represented by their corresponding symbols. Arrays are represented by themselves.

Example
BOX←2 2∘⍴
+F←⎕CR'BOX'

2 2 ∘⍴
⍴F

3
]display F

.→----------.
| .→--. |
| |2 2| ∘ ⍴ |
| '~--' - - |
'∊----------'

If Y is a name assigned to a defined function, R is the ⎕CR of the defined function. In
particular, the name that appears in the function header is the name of the original
defined function, not the assigned name Y.

Example
AVERAGE←MEAN
⎕CR'AVERAGE'

R←MEAN X ⍝ Arithmetic mean
R←(+/X)÷⍴X

Chapter 4: System Functions 302

Change Space {R}←{X}⎕CS Y

Ymust be namespace reference (ref) or a simple character scalar or vector identifying
the name of a namespace.

If specified, X is a simple character scalar, vector, matrix or a nested vector of
character vectors identifying zero or more workspace objects to be exported into the
namespace Y.

The identifiers in X and Ymay be simple names or compound names separated by
'.' and including the names of the special namespaces '⎕SE', '#', and '##'.

The result R is the full name (starting #.) of the space in which the function or
operator was executing prior to the ⎕CS.

⎕CS changes the space in which the current function or operator is running to the
namespace Y and returns the original space, in which the function was previously
running, as a shy result. After the ⎕CS, references to global names (with the
exception of those specified in X) are taken to be references to global names in Y.
References to local names (i.e. those local to the current function or operator) are,
with the exception of those with name class 9, unaffected. Local names with name
class 9 are however no longer visible.

When the function or operator terminates, the calling function resumes execution in
its original space.

The names listed in X are temporarily exported to the namespace Y. If objects with
the same name exist in Y, these objects are effectively shadowed and are inaccessible.
Note that Dyadic ⎕CSmay be used only if there is a traditional function in the state
indicator (stack). Otherwise there would be no way to retract the export. In this case
(for example in a clear workspace) DOMAIN ERROR is reported.

Note that calling ⎕CS with an empty argument Y obtains the namespace in which a
function is currently executing.

Example
This simple example illustrates how ⎕CSmay be used to avoid typing long
pathnames when building a tree of GUI objects. Note that the objects NEW and
OPEN are created as children of the FILEmenu as a result of using ⎕CS to change
into the F.MB.FILE namespace.

Chapter 4: System Functions 303

∇ MAKE_FORM;F;OLD
[1] 'F'⎕WC'Form'
[2] 'F.MB'⎕WC'MenuBar'
[3] 'F.MB.FILE'⎕WC'Menu' '&File'
[4]
[5] OLD←⎕CS'F.MB.FILE'
[6] 'NEW'⎕WC'MenuItem' '&New'
[7] 'OPEN'⎕WC'MenuItem' '&Open'
[8] ⎕CS OLD
[9]
[10] 'F.MB.EDIT'⎕WC'Menu' '&Edit'
[11]
[12] OLD←⎕CS'F.MB.EDIT'
[13] 'UNDO'⎕WC'MenuItem' '&Undo'
[14] 'REDO'⎕WC'MenuItem' '&Redo'
[15] ⎕CS OLD
[16] ...

∇

Example
Suppose a form F1 contains buttons B1 and B2. Each button maintains a count of the
number of times it has been pressed, and the formmaintains a count of the total
number of button presses. The single callback function PRESS and its subfunction
FMT can reside in the form itself

)CS F1
#.F1

⍝ Note that both instances reference
⍝ the same callback function
'B1'⎕WS'Event' 'Select' 'PRESS'
'B2'⎕WS'Event' 'Select' 'PRESS'

⍝ Initialise total and instance counts.
TOTAL ← B1.COUNT ← B2.COUNT ← 0

∇ PRESS MSG
[1] 'FMT' 'TOTAL'⎕CS⊃MSG ⍝ Switch to instance space
[2] (TOTAL COUNT)+←1 ⍝ Incr total & instance count
[3] ⎕WS'Caption'(COUNT FMT TOTAL)⍝ Set instance caption

∇

∇ CAPT←INST FMT TOTL ⍝ Format button caption.
[1] CAPT←(⍕INST),'/',⍕TOTL ⍝ E.g. 40/100.

∇

Chapter 4: System Functions 304

Example
This example uses ⎕CS to explore a namespace tree and display the structure. Note
that it must export its own name (tree) each time it changes space, because the name
tree is global.

∇ tabs tree space;subs ⍝ Display namespace tree
[1] tabs,space
[2] 'tree'⎕CS space
[3] →(⍴subs←↓⎕NL 9)↓0
[4] (tabs,'. ')∘tree¨subs

∇

)ns x.y
#.x.y

)ns z
#.z

''tree '#'
#
. x
. . y
. z

Note
⎕CS is not permitted in a dfn or dop. If used therein it will cause a NONCE ERROR.

Chapter 4: System Functions 305

Comma Separated Values {R}←{X} ⎕CSV Y

This function imports and exports Comma Separated Value (CSV) data.

Monadic ⎕CSV imports data from a CSV file or converts data from CSV format to an
internal format. Dyadic ⎕CSV exports data to a CSV file or converts data from
internal format to a CSV format.

Internal Format
Arrays that result from importing CSV data or arrays that are suitable for exporting as
CSV data are represented by 3 possible structures:

l A table (a matrix whose elements are character vectors or scalars, or
numbers).

l A vector, each of whose items contain field (column) values. Character field
values are character matrices; numeric field values are numeric vectors.

l A vector, each of whose items contain field (column) values. Character field
values are vectors of character vectors; numeric field values are numeric
vectors.

Note that when importing CSV data, all fields are assumed to be character fields
unless otherwise specified (see Column Types below). A field that contains only
"numbers" will not be converted to numeric data unless specified as being numeric.

MetaCharacters
Some characters in a CSV file are metacharacters which define the structure of the
data; for example, the field separator character between fields. Characters which are
not metacharacters are literal characters. The variant optionsQuoteChar,
EscapeChar and DoubleQuote make it possible to interpret metacharacters as literal
characters and thus permit fields to contain field separator characters, leading and
trailing spaces, and line-endings.

Fixed-width fields do not require these options and they are ignored if fixed-width
fields are being processed.

Chapter 4: System Functions 306

Monadic ⎕CSV
R←⎕CSV Y

Y is an array that specifies just the source of the CSV data (see below) or a 1,2,3 or 4-
element vector containing:

[1] Source of CSV Data

[2] Description of the CSV data

[3] Column Types

[4] Header Row Indicator

Sourcemay be one of:

l a character vector or scalar containing a file name
l a native tie number
l a character vector or scalar containing CSV data with embedded newline
characters. To avoid this source being interpreted as a file name, Y[2] must
be specified as 'S'.

l a vector of character vectors and/or scalars containing CSV data with
implicit newlines after each character vector or scalar

Description

If Y[1] is a file name or tie numberDescription may be one of:

l a character vector specifying the file encoding such as 'UTF-8' (see File
Encodings on page 464).

l a 256-element numeric vector that maps each possible byte value (0-255) to
a Unicode code point (1st element = Unicode code point corresponding to
byte value 0, and so on). ¯1 indicates that the corresponding byte value is
not mapped to any character. Apart from ¯1, no value may appear in the
table more than once.

If omitted or empty, the file encoding is deduced (see below).

If Y[1] is a character array containing CSV data Description is a character scalar
'S' (simple) or 'N' (nested). The default is 'N'

Chapter 4: System Functions 307

Column Types

This is a scalar numeric code or vector of numeric codes that specifies the field types
from the list below. IfColumn Types is zilde or omitted, the default is 1 (all fields are
character).

0 The field is ignored.

1 The field contains character data.

2
The field is to be interpreted as being numeric. Empty cells and cells
which cannot be converted to numeric values are not tolerated and cause
an error to be signalled.

3
The field is to be interpreted as being numeric but invalid numeric vales
are tolerated. Empty fields and fields which cannot be converted to
numeric values are replaced with the Fill variant option (default 0).

4

The field is to be interpreted numeric data but invalid numeric data is
tolerated. Empty fields and fields which cannot be converted to numeric
values are returned instead as character data; this type is disallowed when
variant option Invert is set to 1.

5

The field is to be interpreted as being numeric but empty fields are
tolerated and are replaced with the Fill variant option (default 0). Non-
empty cells which cannot be converted to numeric values are not tolerated
and cause an error to be signalled.

Note that ifColumn Types is specified by a scalar 4, all numeric data in all fields will
be converted to numbers.

Header Row Indicator

This is a Boolean value (default 0) to specify whether or not the first record in a
CSV file is a list of column labels. IfHeader Row Indicator is 1, the first record (the
header row) is treated differently from other records. It is assumed to contain
character data (labels) regardless of Y[3] and is returned separately in the result.

Chapter 4: System Functions 308

Variant options
Monadic ⎕CSVmay be applied using the Variant operator with the following
options. The Principal option is Invert.

Name Meaning Default

Invert 0, 1 or 2 (see below) 0

Separator The field separator, any single character. If Widths is
other than ⍬, Separator is ignored. ','

Widths
A vector of numeric values describing the width (in
characters) of the corresponding columns in the CSV
source, or ⍬ for variable width delimited fields

⍬

Decimal The decimal mark in numeric fields - one of '.' or
','

'.'

Thousands
The thousands separator in numeric fields, which may
be specified as an empty character vector (meaning
no separator is defined) or a character scalar

''

Trim
A Boolean specifying whether
undelimited/unescaped whitespace is trimmed at the
beginning and end of fields

1

Ragged A Boolean specifying whether records with varying
numbers of fields are allowed; see notes below 0

Fill The numeric value substituted for invalid numeric
data in columns of type 3 0

Records
The maximum number of records to process or 0 for
no limit. This applies only to a file specified by a tie
number.

0

QuoteChar
The field quote character (delimiter), which may be
specified as an empty character vector (meaning none
is defined) or a character scalar

"

EscapeChar
The escape character, which may be specified as an
empty character vector (meaning none is defined) or a
character scalar

''

DoubleQuote
A Boolean which indicates whether (1) or not (0) a
quote character within a quoted field is represented
by two consecutive quote characters

1

Chapter 4: System Functions 309

The Separator,QuoteChar and EscapeChar characters, when defined, must be
different.

Other options defined for export are also accepted but ignored.

Invert Option
This option specifies how the CSV data should be returned as follows:

0
A table (a matrix whose elements are character vectors or scalars or
numbers).

1
A vector, each of whose items contain field (column) values. Character
field values are character matrices; numeric field values are numeric
vectors.

2
A vector, each of whose items contain field (column) values. Character
field values are vectors of character vectors; numeric field values are
numeric vectors.

QuoteChar, EscapeChar and DoubleQuote Options
IfEscapeChar is set then any character may be prefixed by the escape character. The
escape character is typically defined as '\'. The escape character immediately
followed by the character c is the literal character c even if c alone would have been
a metacharacter.

IfQuoteChar is set then fields may be delimited by the specified quote character.
Within quoted fields all characters except the quote character, and the escape
character if defined, are literal characters.

IfDoubleQuote is set to 1 then two consecutive quote characters within a quoted
field are interpreted as the single literal quote character.

Result
The result R contains the imported data.

If Y[4] does not specify that the data contains a header then R contains the entire
data in the form specified by the Invert variant option.

If Y[4] does specify that the data contains a header then R is a 2-element vector
where:

l R[1] is the imported data excluding the header.
l R[2] is a vector of character vectors containing the header record.

Chapter 4: System Functions 310

Examples

⊃⎕NGET CSVFile←'c:\Dyalog16.0\sales.csv'
┌→───┐
│Product,Sales │
│ Widgets,1912 │
│ Gimlets,205 │
│ Dingbats,189│
│ │
└──┘

⎕CSV CSVFile
┌→───────────────────┐
↓ ┌→──────┐ ┌→────┐ │
│ │Product│ │Sales│ │
│ └───────┘ └─────┘ │
│ ┌→──────┐ ┌→───┐ │
│ │Widgets│ │1912│ │
│ └───────┘ └────┘ │
│ ┌→──────┐ ┌→──┐ │
│ │Gimlets│ │205│ │
│ └───────┘ └───┘ │
│ ┌→───────┐ ┌→──┐ │
│ │Dingbats│ │189│ │
│ └────────┘ └───┘ │
└∊───────────────────┘

Chapter 4: System Functions 311

⎕CSV CSVFile'' ⍬ 1 ⍝ Header row
┌→──┐
│ ┌→──────────────────┐ ┌→──────────────────┐ │
│ ↓ ┌→──────┐ ┌→───┐ │ │ ┌→──────┐ ┌→────┐ │ │
│ │ │Widgets│ │1912│ │ │ │Product│ │Sales│ │ │
│ │ └───────┘ └────┘ │ │ └───────┘ └─────┘ │ │
│ │ ┌→──────┐ ┌→──┐ │ └∊──────────────────┘ │
│ │ │Gimlets│ │205│ │ │
│ │ └───────┘ └───┘ │ │
│ │ ┌→───────┐ ┌→──┐ │ │
│ │ │Dingbats│ │189│ │ │
│ │ └────────┘ └───┘ │ │
│ └∊──────────────────┘ │
└∊──┘

⎕CSV CSVFile''(1 2)1 ⍝ Fields are Char, Num
┌→──┐
│ ┌→────────────────┐ ┌→──────────────────┐ │
│ ↓ ┌→──────┐ │ │ ┌→──────┐ ┌→────┐ │ │
│ │ │Widgets│ 1912 │ │ │Product│ │Sales│ │ │
│ │ └───────┘ │ │ └───────┘ └─────┘ │ │
│ │ ┌→──────┐ │ └∊──────────────────┘ │
│ │ │Gimlets│ 205 │ │
│ │ └───────┘ │ │
│ │ ┌→───────┐ │ │
│ │ │Dingbats│ 189 │ │
│ │ └────────┘ │ │
│ └∊────────────────┘ │
└∊──┘

(⎕CSV⍠'Invert' 1)CSVFile'' (1 2) 1 ⍝ Invert 1
┌→──┐
│ ┌→──────────────────────────┐ ┌→──────────────────┐ │
│ │ ┌→───────┐ ┌→───────────┐ │ │ ┌→──────┐ ┌→────┐ │ │
│ │ ↓Widgets │ │1912 205 189│ │ │ │Product│ │Sales│ │ │
│ │ │Gimlets │ └~───────────┘ │ │ └───────┘ └─────┘ │ │
│ │ │Dingbats│ │ └∊──────────────────┘ │
│ │ └────────┘ │ │
│ └∊──────────────────────────┘ │
└∊──┘

⊃(⎕CSV⍠'Invert' 2)CSVFile'' (1 2) 1 ⍝ Invert 2
┌→──┐
│ ┌→───────────────────────────────┐ ┌→───────────┐ │
│ │ ┌→──────┐ ┌→──────┐ ┌→───────┐ │ │1912 205 189│ │
│ │ │Widgets│ │Gimlets│ │Dingbats│ │ └~───────────┘ │
│ │ └───────┘ └───────┘ └────────┘ │ │
│ └∊───────────────────────────────┘ │
└∊──┘

Chapter 4: System Functions 312

Notes
l When Y specifies just the source of the CSV data, it does not need to be
enclosed or ravelled to create a 1-element vector.

l Y[2], the description of the source, distinguishes an otherwise ambiguous
character vector source (which could contain either CSV data or a file
name). The other source forms are unambiguous but the description, when
given, must still match the given source type.

l Tab-separated fields may be imported by specifying 'Separator'
(⎕UCS 9).

l Fields containing embedded new lines are supported (they must, of course,
appear in quotes or be prefixed by the escape character). On import, line
endings are always converted to a single line feed character.

l If Ragged is not set then all records must have the same number of fields
(character delimited format) or same number of characters (fixed width field
format).

l If Ragged is set:
o The expected number of columns must be specified using the Widths

variant option and/or the column types in Y[3].
o In character delimited format, all processed records are implicitly

extended or truncated as required so that they contain the expected
number of fields; implicitly added fields will be empty.

o In fixed width format, all processed records are implicitly extended
with spaces or truncated as required so that they contain as many
characters as are specified in the Widths option declaration.

Chapter 4: System Functions 313

File handling
Data may be read from a named file or a tied native file. A tied native file may be read
in sections by repeatedly invoking ⎕CSV for a specified maximum number of records
(specified by the Records variant) until no more data is read.

In all cases the files must contain text using one of the supported encodings. See File
Encodings on page 464. The method used to determine the file encoding is as
follows:

l If a Byte Order Mark (BOM) is encountered at the start of the file, it is used
regardless of Y[2] (if specified). Note, however, that the BOM can only be
encountered if the file is read from the start - specifically, if a native file is
read in sections, any BOM present will only be encountered when the first
section is read.

l Otherwise, the file will be read and decoded according to the file encoding
in Y[2] if specified.

l Otherwise:
o Native files will be decoded as if 'UTF-8' had been specified.
o Files specified by name will be examined and the likely file encoding

will be deduced using the same heuristics performed by ⎕NGET.

Note also:
l Native files are read from the current file position. On successful
completion, the file position will be at the first unprocessed character (end
of file if the Records variant option is not specified). If an error is signalled
the file position is undefined.

l The result does not report the file encoding or line ending type as it does
with ⎕NGET. If this information is required then it must be obtained by
other means.

Chapter 4: System Functions 314

Dyadic ⎕CSV
{R}←X ⎕CSV Y

The left argument X is either:

l a matrix or a vector of vectors/matrices containing the data to be converted
to CSV format.

l or a 2-element vector containing a matrix or vector of vectors/matrices
containing the data to be converted to CSV format, and a vector of character
vectors containing the header record.

Y is a 1 or 2-element vector containing:

[1] Destination of CSV Data (see below)

[2] Description of the CSV data (see below)

Destination - may be one of:

l a character vector or scalar containing a file name
l a native tie number
l an empty character vector, indicating that the CSV data is to be returned in
the result R

Description

If Y[1] is a file name or tie number,Description may be:

l a character vector specifying the file encoding such as 'UTF-8' (see File
Encodings on page 464).

l a 256-element numeric vector that maps each possible byte value (0-255) to
a Unicode code point (1st element = Unicode code point corresponding to
byte value 0, and so on). ¯1 indicates that the corresponding byte value is
not mapped to any character. Apart from ¯1, no value may appear in the
table more than once.

If Y[1] is empty,Description may be a character scalar 'S' (simple) or 'N'
(nested). If omitted, the default is 'S'

Chapter 4: System Functions 315

Variant options
Dyadic ⎕CSVmay be applied using the Variant operator with the following options.

Name Meaning Default

IfExists

a character vector 'Error' or 'Replace'
which specifies, when creating a named file
which already exists, whether to overwrite it
('Replace') or signal an error ('Error')

'Error'

Separator the field separator, any single character. If Widths
is other than ⍬, Separator is ignored. ','

Widths

a vector of numeric values describing the width
(in characters) of the corresponding columns in
the CSV source, or ⍬ for variable width delimited
fields

⍬

Decimal the decimal mark in numeric fields - one of '.'
or ',' '.'

Thousands

the thousands separator in numeric fields, which
may be specified as an empty character vector
(meaning no separator is defined) or a character
scalar

''

Trim
a Boolean specifying whether whitespace is
trimmed at the beginning and end of character
fields

1

LineEnding the line ending sequence - see Line separators:
on page 466

(13 10) on
Windows;
10 on other
platforms

QuoteChar
The field quote character (delimiter), which may
be specified as an empty character vector
(meaning none is defined) or a character scalar

"

EscapeChar
The escape character, which may be specified as
an empty character vector (meaning none is
defined) or a character scalar

''

DoubleQuote
A Boolean which indicates whether (1) or not (0)
a quote character within a quoted field is
represented by two consecutive quote characters

1

Chapter 4: System Functions 316

The Separator,QuoteChar and EscapeChar characters, when defined, must be
different. Other options defined for import are also accepted but ignored.

TheOverwrite variant option (Boolean) from Version 16.0 remains supported but is
deprecated in favour of IfExists.

QuoteChar, EscapeChar and DoubleQuote options
l The CSV text will be generated such that it can be read back according to
the corresponding rules for import.

l If these options do not permit this (for example, a field contains the quote
character and neither DoubleQuote or EscapeChar are set) an error is
signalled.

l Quoting and Escaping is used as conservatively as possible.
l If both QuoteChar and EscapeChar are set, quoting is favoured.

If Y specifies that the CSV data is written to a file then R is the number of bytes (not
characters) written, and is shy.

Otherwise, R is the CSV data in the format specified in Y, and is not shy.

Examples
CSVFile←'c:\Dyalog16.0\sales.csv'
⎕←DATA HDR←⎕CSV CSVFile''(1 2)1

┌→──┐
│ ┌→────────────────┐ ┌→──────────────────┐ │
│ ↓ ┌→──────┐ │ │ ┌→──────┐ ┌→────┐ │ │
│ │ │Widgets│ 1912 │ │ │Product│ │Sales│ │ │
│ │ └───────┘ │ │ └───────┘ └─────┘ │ │
│ │ ┌→──────┐ │ └∊──────────────────┘ │
│ │ │Gimlets│ 205 │ │
│ │ └───────┘ │ │
│ │ ┌→───────┐ │ │
│ │ │Dingbats│ 189 │ │
│ │ └────────┘ │ │
│ └∊────────────────┘ │
└∊──┘

Chapter 4: System Functions 317

DATA⍪←'Gizmos' 23
DATA HDR ⎕CSV''

┌→────────────┐
│Product,Sales│
│ │
│Widgets,1912 │
│ │
│Gimlets,205 │
│ │
│Dingbats,189 │
│ │
│Gizmos,23 │
│ │
│ │
└─────────────┘

CSVFile1←'c:\Dyalog16.0\sales1.csv'
⎕←DATA HDR ⎕CSV CSVFile1

67
DATA⍪←'Gimbals' 123
⎕←DATA HDR ⎕CSV CSVFile1

FILE NAME ERROR: Unable to create file ("The file
exists.")

⎕←DATA HDR ⎕CSV CSVFile1
∧
⎕←DATA HDR(⎕CSV⍠'IfExists' 'Replace')CSVFile1

80

Chapter 4: System Functions 318

Notes
l When Y contains only the destination of the CSV data (i.e. omits the
description in its second element) it does not have to be enclosed to form a
single element vector.

l Native files are written from the current file position. On successful
completion, the file position will be at the end of the written data. If an
error is signalled the amount of data written is undefined.

l If the file encoding specifies that a BOM is required and output is to a
native file, it will only be written if the file position is initially at 0 - that
is, the start of the file is being written.

l When fixed width fields are written, character data shorter than the specified
width is padded with spaces to the right and character data longer than the
specified width signals an error. Numeric data is converted to character data
as far as possible so that it fits into the specified width. If this is not
possible, an error is signalled.

l Tab-separated fields may be exported by specifying 'Separator'
(⎕UCS 9).

l Fields containing a single embedded new line are supported. On export, line
feed characters are mapped back to the defined line ending sequence.

Chapter 4: System Functions 319

Comparison Tolerance ⎕CT

The value of ⎕CT determines the precision with which two numbers are judged to be
equal. Two numbers, X and Y, are judged to be equal if (|X-Y)≤⎕CT×(|X)
⌈|Ywhere ≤ is applied without tolerance.

Thus ⎕CT is not used as an absolute value in comparisons, but rather specifies a
relative value that is dependent on the magnitude of the number with the greater
magnitude. It then follows that ⎕CT has no effect when either of the numbers is zero.

⎕CTmay be assigned any value in the range from 0 to 2*¯32 (about 2.3E¯10). A
value of 0 ensures exact comparison. The value in a clear workspace is 1E¯14.

If ⎕FR is 1287, the system uses ⎕DCT. See Decimal Comparison Tolerance on page
322.

⎕CT and ⎕DCT are implicit arguments of the monadic primitive functions Ceiling
(⌈), Floor (⌊) and Unique (∪), and of the dyadic functions Equal (=), Excluding (~),
Find (⍷), Greater (>), Greater or Equal (≥), Greatest Common Divisor (∨), Index of
(⍳), Intersection (∩), Less (<), Less or Equal (≤), Lowest Common Multiple (∧), Match
(≡), Membership (∊), Not Match (≢), Not Equal (≠), Residue (|) and Union (∪), as
well as ⎕FMT O-format.

Examples
⎕CT←1E¯10
1.00000000001 1.0000001 = 1

1 0

Chapter 4: System Functions 320

Copy Workspace {R}←{X}⎕CY Y

Ymust be a simple character scalar or vector identifying a saved workspace (or
Session file). X is optional. If present, it must be a simple character scalar, vector or
matrix or a vector of character vectors that specifies one or more APL names.

Each name in X is taken to be the name of an active object in the workspace
identified by Y. If X is omitted, the names of all defined active objects in that
workspace are implied (defined functions and operators, variables, labels and
namespaces).

Each object named in X (or implied) is copied from the workspace identified by Y to
become the active object referenced by that name in the active workspace if the
object can be copied. A copied label is re-defined to be a variable of numeric type.
If the name of the copied object has an active referent in the active workspace, the
name is disassociated from its value and the copied object becomes the active
referent to that name. In particular, a function in the state indicator which is
disassociated may be executed whilst it remains in the state indicator, but it ceases to
exist for other purposes, such as editing.

The shy result R is 0⍴⊂''.

You may copy an object from a namespace by specifying its full pathname. The
object will be copied to the current namespace in the active workspace, losing its
original parent and gaining a new one in the process. You may only copy a GUI
object into a namespace that is a suitable parent for that object. For example, you
could only copy a Group object from a saved workspace if the current namespace in
the active workspace is itself a Form, SubForm or Group.

See Copy Workspace on page 634 for further information and, in particular, the
manner in which dependant and referenced objects are copied, and copying objects
from Session (.dse) files.

A DOMAIN ERROR is reported in any of the following cases:

l Y is ill-formed, or is not the name of a workspace with access authorised for
the active user account.

l Any name in X is ill-formed.
l An object named in X does not exist as an active object in workspace
named in Y.

An object being copied has the same name as an active label.

When copying data between Classic and Unicode Editions, ⎕CY will fail and a
TRANSLATION ERROR will be reported if any object in workspace Y fails
conversion between Unicode and ⎕AV indices, whether or not that object is specified
by X. See Atomic Vector - Unicode on page 288 for further details.

Chapter 4: System Functions 321

A WS FULL is reported if the active workspace becomes full during the copying
process.

Example
⎕VR'FOO'

∇ R←FOO
[1] R←10

∇
'FOO' ⎕CY 'BACKUP'
⎕VR'FOO'

∇ R←FOO X
[1] R←10×X

∇

System variables are copied if explicitly included in the left argument, but not if the
left argument is omitted.

Example
⎕LX

('⎕LX' 'X')⎕CY'WS/CRASH'
⎕LX

→RESTART

A copied object may have the same name as an object being executed. If so, the
name is disassociated from the existing object, but the existing object remains
defined in the workspace until its execution is completed.

Example
)SI

#.FOO[1]*

⎕VR'FOO'
∇ R←FOO

[1] R←10
∇

'FOO'⎕CY'WS/MYWORK'

FOO
1 2 3

)SI
#.FOO[1]*

→⎕LC
10

Chapter 4: System Functions 322

Digits R←⎕D

This is a simple character vector of the digits from 0 to 9.

Example
⎕D

0123456789

Decimal Comparison Tolerance ⎕DCT

The value of ⎕DCT determines the precision with which two numbers are judged to
be equal when the value of ⎕FR is 1287. If ⎕FR is 645, the system uses ⎕CT.

⎕DCTmay be assigned any value in the range from 0 to 2*¯32 (about
2.3283064365386962890625E¯10). A value of 0 ensures exact comparison.
The value in a clear workspace is 1E¯28.

⎕CT and ⎕DCT are implicit arguments of the monadic primitive functions Ceiling
(⌈), Floor (⌊) and Unique (∪), and of the dyadic functions Equal (=), Excluding (~),
Find (⍷), Greater (>), Greater or Equal (≥), Greatest Common Divisor (∨), Index of
(⍳), Intersection (∩), Less (<), Less or Equal (≤), Lowest Common Multiple (∧), Match
(≡), Membership (∊), Not Match (≢), Not Equal (≠), Residue (|) and Union (∪), as
well as ⎕FMT O-format.

For further information, see Comparison Tolerance on page 319.

Examples
⎕DCT←1E¯10
1.00000000001 1.0000001 = 1

1 0

Chapter 4: System Functions 323

Display Form {R}←⎕DF Y

⎕DF sets the Display Form of a namespace, a GUI object, a Class, or an Instance of a
Class.

Ymust be ⎕NULL or a simple character array that specifies the display form of a
namespace. If defined, this array will be returned by the format functions and ⎕FMT
instead of the default for the object in question. This also applies to the string that is
displayed when the name is referenced but not assigned (the default display). If Y is
⎕NULL, ⎕DF resets the Display Form to the default.

The result R is the previous value of the Display Form which initially is ⎕NULL.

'F'⎕WC'Form'
⍕F

#.F
⍴⍕F

3
⎕FMT F

#.F
⍴⎕FMT F

1 3
F ⍝ default display uses ⍕

#.F

F.⎕DF 'Pete''s Form'
⍕F

Pete's Form
⍴⍕F

11
⎕FMT F

Pete's Form
⍴⎕FMT F

1 11

Notice that ⎕DF will accept any character array, but ⎕FMT always returns a matrix.

F.⎕DF 2 2 5⍴⎕A
F

ABCDE
FGHIJ

KLMNO
PQRST

⍴⍕F
2 2 5

Chapter 4: System Functions 324

⍴⎕←⎕FMT F
ABCDE
FGHIJ

KLMNO
PQRST
5 5

Note that ⎕DF defines the Display Form statically, rather than dynamically.

'F'⎕WC'Form' 'This is the Caption'
F

#.F

F.(⎕DF Caption)⍝ set display form to current
caption

F
This is the Caption

F.Caption←'New Caption' ⍝ changing caption does not
⍝ change the display form

F
This is the Caption

You may use the Constructor function to assign the Display Form to an Instance of a
Class. For example:

:Class MyClass
∇ Make arg

:Access Public
:Implements Constructor
⎕DF arg

∇
:EndClass ⍝ MyClass

PD←⎕NEW MyClass 'Pete'
PD

Pete

Chapter 4: System Functions 325

It is possible to set the Display Form for the Root and for ⎕SE

)CLEAR
clear ws

#
#

⎕DF ⎕WSID
#

CLEAR WS

⎕SE
⎕SE

⎕SE.⎕DF 'Session'
⎕SE

Session

Note that ⎕DF applies directly to the object in question and is not automatically
applied in a hierarchical fashion.

'X'⎕NS ''
X

#.X

'Y'X.⎕NS ''
X.Y

#.X.Y
X.⎕DF 'This is X'
X

This is X

X.Y
#.X.Y

Chapter 4: System Functions 326

Division Method ⎕DIV

The value of ⎕DIV determines how division by zero is to be treated. If ⎕DIV=0,
division by 0 produces a DOMAIN ERROR except that the special case of 0÷0 returns
1.

If ⎕DIV=1, division by 0 returns 0.

⎕DIVmay be assigned the value 0 or 1. The value in a clear workspace is 0.

⎕DIV is an implicit argument of the monadic function Reciprocal (÷) and the dyadic
function Divide (÷).

Examples
⎕DIV←0

1 0 2 ÷ 2 0 1
0.5 1 2

÷0 1
DOMAIN ERROR

÷0 1
^

⎕DIV←1

÷0 2
0 0.5

1 0 2 ÷ 0 0 4
0 0 0.5

Chapter 4: System Functions 327

Delay {R}←⎕DL Y

Ymust be a simple non-negative single numeric value (of any rank). A pause of
approximately Y seconds is caused.

The shy result R is a scalar numeric value indicating the length of the pause in
seconds.

The pause may be interrupted by a strong interrupt.

Diagnostic Message R←⎕DM

This niladic function returns the last reported APL error as a three-element vector,
giving error message, line in error and position of caret pointer.

Example
2÷0

DOMAIN ERROR
2÷0

^

⎕DM
DOMAIN ERROR 2÷0 ^

Note: ⎕SIGNAL can be used to reset the value of this system constant.

Chapter 4: System Functions 328

Extended Diagnostic Message R←⎕DMX

⎕DMX is a system object that provides information about the last reported APL error.
⎕DMX has thread scope, i.e. its value differs according to the thread fromwhich it is
referenced. In a multi-threaded application therefore, each thread has its own value of
⎕DMX.

⎕DMX contains the following Properties (name class 2.6). Note that this list is likely
to change. Your code should not assume that this list will remain unchanged. You
should also not assume that the display form of ⎕DMX will remain unchanged.

Category
character
vector The category of the error

DM
nested
vector

Diagnostic message. This is the same as
⎕DM, but thread safe

EM
character
vector

Event message; this is the same as ⎕EM
⎕EN

EN integer Error number. This is the same as ⎕EN, but
thread safe

ENX integer Sub-error number

HelpURL
character
vector

URL of a web page that will provide help
for this error. APL identifies and has a
handler for URLs starting with http:,
https:, mailto: and www. This list may be
extended in future

InternalLocation
nested
vector

Identifies the line of interpreter source
code (file name and line number) which
raised the error. This information may be
useful to Dyalog support when
investigating an issue

Message
character
vector Further information about the error

OSError
see
below

If applicable, identifies the error generated
by the Operating System

Vendor
character
vector

For system generated errors, Vendor will
always contain the character vector
'Dyalog'. This value can be set using
⎕SIGNAL

Chapter 4: System Functions 329

OSError is a 3-element vector whose items are as follows:

1 integer

This indicates how the operating system error was
retrieved.
0 = by the C-library errno() function
1 = by the Windows GetLastError() function

2 integer Error code. The error number returned by the operating
system using errno() or GetLastError() as above

3
character
vector

The description of the error returned by the operating
system

Example
1÷0

DOMAIN ERROR
1÷0

∧
⎕DMX

EM DOMAIN ERROR
Message Divide by zero

⎕DMX.InternalLocation
arith_su.c 554

Isolation of Handled Errors
⎕DMX cannot be explicitly localised in the header of a function. However, for all
trapped errors, the interpreter creates an environment which effectively makes the
current instance of ⎕DMX local to, and available only for the duration of, the trap-
handling code.

With the exception of ⎕TRAP with Cutback, ⎕DMX is implicitly localised within:

l Any function which explicitly localises ⎕TRAP
l The :Case[List] or :Else clause of a :Trap control structure.
l The right hand side of a D-function Error-Guard.

Chapter 4: System Functions 330

and is implicitly un-localised when:

l A function which has explicitly localised ⎕TRAP terminates (even if the
trap definition has been inherited from a function further up the stack).

l The :EndTrap of the current :Trap control structure is reached.
l A D-function Error-Guard exists.

During this time, if an error occurs then the localised ⎕DMX is updated to reflect the
values generated by the error.

The same is true for ⎕TRAP with Cutback, with the exception that if the cutback trap
event is triggered, the updated values for ⎕DMX are preserved until the function that
set the cutback trap terminates.

The benefit of the localisation strategy is that code which uses error trapping as a
standard operating procedure (such as a file utility which traps FILE NAME ERROR
and creates missing files when required) will not pollute the environment with
irrelevant error information.

Example
∇ tie←NewFile name

[1] :Trap 22
[2] tie←name ⎕FCREATE 0
[3] :Else
[4] ⎕DMX
[5] tie←name ⎕FTIE 0
[6] name ⎕FERASE tie
[7] tie←name ⎕FCREATE 0
[8] :EndTrap
[9] ⎕FUNTIE tie

∇

⎕DMX is cleared by)RESET:

)reset
⍴⎕FMT ⎕DMX

0 0

Note: ⎕SIGNAL can be used to reset the value of this system constant.

The first time we run NewFile 'pete', the file doesn't exist and the ⎕FCREATE
in NewFile[2] succeeds.

NewFile 'pete'
1

Chapter 4: System Functions 331

If we run the function again, the ⎕FCREATE in NewFile[2]generates an error
which triggers the :Else clause of the :Trap. On entry to the :Else clause, the
values in ⎕DMX reflect the error generated by ⎕FCREATE. The file is then tied, erased
and recreated.

EM FILE NAME ERROR
Message File exists

After exiting the :Trap control structure, the shadowed value of ⎕DMX is discarded,
revealing the original value that it shadowed.

⍴⎕FMT ⎕DMX
0 0

Example
The EraseFile function also uses a :Trap in order to ignore the situation when
the file doesn't exist.

∇ EraseFile name;tie
[1] :Trap 22
[2] tie←name ⎕FTIE 0
[3] name ⎕FERASE tie
[4] :Else
[5] ⎕DMX
[6] :EndTrap

∇

The first time we run the function, it succeeds in tieing and then erasing the file.

EraseFile 'pete'

The second time, the ⎕FTIE fails. On entry to the :Else clause, the values in ⎕DMX
reflect this error.

EraseFile 'pete'
EM FILE NAME ERROR
Message Unable to open file
OSError 1 2 The system cannot find the file specified.

Chapter 4: System Functions 332

Once again, the local value of ⎕DMX is discarded on exit from the :Trap, revealing
the shadowed value as before.

⍴⎕FMT ⎕DMX
0 0

Example
In this example only the error number (EN) property of ⎕DMX is displayed in order to
simplify the output:

∇ foo n;⎕TRAP
[1] 'Start foo'⎕DMX.EN
[2] ⎕TRAP←(2 'E' '→err')(11 'C' '→err')
[3] goo n
[4] err:'End foo:'⎕DMX.EN

∇

∇ goo n;⎕TRAP
[1] ⎕TRAP←5 'E' '→err'
[2] ⍎n⊃'÷0' '1 2+1 2 3' '∘'
[3] err:'goo:'⎕DMX.EN

∇

In the first case a DOMAIN ERROR (11) is generated on goo[2]. This error is not
included in the definition of ⎕TRAP in goo, but rather the Cutback ⎕TRAP
definition in foo. The error causes the stack to be cut back to foo, and then
execution branches to foo[4]. Thus ⎕DMX.EN in foo retains the value set when
the error occurred in goo.

foo 1
Start foo 0
End foo: 11

In the second case a LENGTH ERROR (5) is raised on goo[2]. This error is included
in the definition of ⎕TRAP in goo so the value ⎕DMX.EN while in goo is 5, but
when goo terminates and foo resumes execution the value of ⎕DMX.EN localised in
goo is lost.

foo 2
Start foo 0
goo: 5
End foo: 0

Chapter 4: System Functions 333

In the third case a SYNTAX ERROR (2) is raised on goo[2]. Since the ⎕TRAP
statement is handled within goo (although the applicable ⎕TRAP is defined in foo),
the value ⎕DMX.EN while in goo is 2, but when goo terminates and foo resumes
execution the value of ⎕DMX.EN localised in goo is lost.

foo 3
Start foo 0
goo: 2
End foo: 0

Dequeue Events {R}←⎕DQ Y

⎕DQ awaits and processes events. Y specifies the GUI objects(s) for which events are
to be processed. Objects are identified by their names, as character scalars/vectors, or
by namespace references. These may be objects of type Root, Form, Locator, FileBox,
MsgBox, PropertySheet, TCPSocket, Timer, Clipboard and pop-up Menu. Sub-
objects (children) of those named in Y are also included. However, any objects
which exist, but are not named in Y, are effectively disabled (do not respond to the
user).

If Y is #, '#', or '.', all objects currently owned and subsequently created by the
current thread are included in the ⎕DQ. Note that because the Root object is owned
by thread 0, events on Root are reported only to thread 0.

If Y is empty it specifies the object associated with the current namespace and is only
valid if the current space is one of the objects listed above.

Otherwise, Y contains the name(s) of or reference(s) to the objects for which events
are to be processed. Effectively, this is the list of objects with which the user may
interact. A DOMAIN ERROR is reported if an element of Y refers to anything other
than an existing "top-level" object.

Associated with every object is a set of events. For every event there is defined an
"action" which specifies how that event is to be processed by ⎕DQ. The "action" may
be a number with the value 0, 1 or ¯1, a character vector containing the name of a
"callback function", or a character vector containing the name of a callback function
coupled with an arbitrary array. Actions can be defined in a number of ways, but the
following examples will illustrate the different cases.

Chapter 4: System Functions 334

OBJ ⎕WS 'Event' 'Select' 0

OBJ ⎕WS 'Event' 'Select' 1

OBJ ⎕WS 'Event' 'Select' 'FOO'

OBJ ⎕WS 'Event' 'Select' 'FOO' 10

OBJ ⎕WS 'Event' 'Select' 'FOO&'

These are treated as follows:

Action = 0 (the default)
⎕DQ performs "standard" processing appropriate to the object and type of event. For
example, the standard processing for a KeyPress event in an Edit object is to action
the key press, i.e. to echo the character on the screen.

Action = ¯1
This disables the event. The "standard" processing appropriate to the object and type
of event is not performed, or in some cases is reversed. For example, if the "action
code" for a KeyPress event (22) is set to ¯1, ⎕DQ simply ignores all keystrokes for
the object in question.

Action = 1
⎕DQ terminates and returns information pertaining to the event (the event message)
in R as a nested vector whose first two elements are the name of the object (that
generated the event) and the event code. Rmay contain additional elements
depending upon the type of event that occurred.

Action = fn {larg}
fn is a character vector containing the name of a callback function. This function is
automatically invoked by ⎕DQ whenever the event occurs, and prior to the standard
processing for the event. The callback is supplied the event message (see above) as
its right argument, and, if specified, the array larg as its left argument. If the
callback function fails to return a result, or returns the scalar value 1, ⎕DQ then
performs the standard processing appropriate to the object and type of event. If the
callback function returns a scalar 0, the standard processing is not performed or in
some cases is reversed.

If the callback function returns its event message with some of the parameters
changed, these changes are incorporated into the standard processing. An example
would be the processing of a keystroke message where the callback function
substitutes upper case for lower case characters. The exact nature of this processing is
described in the reference section on each event type.

Chapter 4: System Functions 335

Action = ⍎expr
If Action is set to a character vector whose first element is the execute symbol (⍎)
the remaining string will be executed automatically whenever the event occurs. The
default processing for the event is performed first and may not be changed or
inhibited in any way.

Action = fn& {larg}
fn is a character vector containing the name of a callback function. The function is
executed in a new thread. The default processing for the event is performed first and
may not be changed or inhibited in any way.

The Result of ⎕DQ
⎕DQ terminates, returning the shy result R, in one of four instances.

Firstly, ⎕DQ terminates when an event occurs whose "action code" is 1. In this case,
its result is a nested vector containing the event message associated with the event.
The structure of an event message varies according to the event type (see Object
Reference). However, an event message has at least two elements of which the first is
a ref to the object or a character vector containing the name of the object, and the
second is a character vector or numeric code which identifies the event type.

⎕DQ also terminates if all of the objects named in Y have been deleted. In this case,
the result is an empty character vector. Objects are deleted either using ⎕EX, or on
exit from a defined function or operator if the names are localised in the header, or on
closing a form using the systemmenu.

Thirdly, ⎕DQ terminates if the object named in its right argument is a special modal
object, such as a MsgBox, FileBox or Locator, and the user has finished
interacting with the object (e.g. by pressing an "OK" button). The return value of
⎕DQ in this case depends on the action code of the event.

Finally, ⎕DQ terminates with a VALUE ERROR if it attempts to execute a callback
function that is undefined.

Chapter 4: System Functions 336

Data Representation (Monadic) R←⎕DR Y

Monadic ⎕DR returns the type of its argument Y. The result R is an integer scalar
containing one of the following values. Note that the internal representation and data
types for character data differ between the Unicode and Classic Editions.

Table 14: Unicode Edition
Value Data Type

11 1 bit Boolean

80 8 bits character

83 8 bits signed integer

160 16 bits character

163 16 bits signed integer

320 32 bits character

323 32 bits signed integer

326 Pointer (32-bit or 64-bit as appropriate)

645 64 bits Floating

1287 128 bits Decimal

1289 128 bits Complex

Table 15: Classic Edition
Value Data Type

11 1 bit Boolean

82 8 bits character

83 8 bits signed integer

163 16 bits signed integer

323 32 bits signed integer

326 Pointer (32-bit or 64-bit as appropriate)

645 64 bits Floating

1287 128 bits Decimal

1289 128 bits Complex

Chapter 4: System Functions 337

Data Representation (Dyadic) R←X ⎕DR Y

Dyadic ⎕DR converts the data type of its argument Y according to the type
specification X. See Data Representation (Monadic) above for a list of data types but
note that 1287 is not a permitted value in X.

Case 1:
X is a single integer value. The bits in the right argument are interpreted as elements
of an array of type X. The shape of the resulting new array will typically be changed
along the last axis. For example, a character array interpreted as Boolean will have 8
times as many elements along the last axis.

Case 2:
X is a 2-element integer value. Y is any array.

X[1] is either 0 or a data type. If X[1] is 0, Y is converted to data type X[2]. If X
[1] is non-zero, the bits in Y are first interpreted as being of type X[1] before being
converted to type X[2]. If Y is a scalar it is ravelled. Conversion of Y from one
internal data type to another is performed so as to preserve its values without loss of
precision.

The result R is a two element nested array comprised of:

1. The converted elements or a fill element (0 or blank) where the conversion
failed

2. A Boolean array of the same shape indicating which elements were
successfully converted.

Examples
bits← 0 1 0 0 1 0 0 0 , 0 1 0 0 1 0 1 1
80 ⎕DR bits

HK
83 ⎕DR bits

72 75
163 ⎕DR bits

19272

0 645 ⎕DR 72 75
┌─────┬───┐
│72 75│1 1│
└─────┴───┘

163 645 ⎕DR 72 75
┌─────┬─┐
│19272│1│
└─────┴─┘

Chapter 4: System Functions 338

Case 3: Classic Edition Only
X is a 3-element integer value and X[2 3] is 163 82. The bits in the right argument
are interpreted as elements of an array of type X[1]. The system then converts them
to the character representation of the corresponding 16 bit integers. This case is
provided primarily for compatibility with APL*PLUS. For new applications, the use
of the [conv] field with ⎕NAPPEND and ⎕NREPLACE is recommended.

Conversion to and from character (data type 82) uses the translate vector given by
⎕NXLATE 0. By default this is the mapping defined by the current output translate
table (usually WIN.DOT).

Notes:
l The internal representation of data may be modified during workspace
compaction. For example, numeric arrays and (in the Unicode Edition)
character arrays will, if possible, be squeezed to occupy the least possible
amount of memory. However, the internal representation of the result R is
guaranteed to remain unmodified until it is re-assigned (or partially re-
assigned) with the result of any function.

l The precise operation of dyadic ⎕DR depends upon the byte-ordering
scheme of the computer system. The examples below assume a big-endian
architecture.

Chapter 4: System Functions 339

Edit Object {R}←{X}⎕ED Y

⎕ED invokes the Editor. Y is a simple character vector, a simple character matrix, or a
vector of character vectors, containing the name(s) of objects to be edited. The
optional left argument X is a character scalar or character vector which specifies the
type(s) of the corresponding (new) object(s) named in Y, where:

∇ function/operator

→ simple character vector

∊ vector of character vectors

- character matrix

⍟ Namespace script

○ Class script

∘ Interface

If an object named in Y already exists, the type specification in X is ignored for that
name.

If ⎕ED is called from the Session, it opens Edit windows for the object(s) named in Y
and returns a null result. The cursor is positioned in the first of the Edit windows
opened by ⎕ED, but may be moved to the Session or to any other window which is
currently open. The effect is almost identical to using)ED.

If ⎕ED is called from a defined function or operator, its behaviour is different. On
asynchronous terminals, the Edit windows are automatically displayed in "full-
screen" mode (ZOOMED). In all implementations, the user is restricted to those
windows named in Y. The user may not skip to the Session even though the Session
may be visible.

⎕ED terminates and returns a result ONLY when the user explicitly closes all the
windows for the named objects. In this case the result contains the names of any
objects which have been newly (re)fixed in the workspace as a result of the ⎕ED, and
has the same structure as Y.

Objects named in Y that cannot be edited are silently ignored. Objects qualified with
a namespace path are (e.g. a.b.c.foo) are silently ignored if the namespace does
not exist.

Chapter 4: System Functions 340

Variants of Edit Object
The behaviour of ⎕EDmay be modified using the variant operator ⍠ with the
following options:

l 'ReadOnly' - 0 or 1
l 'EditName' - 'Default', 'Allow' or 'Disallow'.

If ReadOnly is set to 1, the edit window and all edit windows opened from it will
be read-only. Note that setting ReadOnly to 0 will have no effect if the edit
window is inherently read-only due to the nature of its content.

The 'EditName' option determines whether or not the user may open another edit
window by clicking a name, and its values are interpreted as follows:

EditName ⎕ED called from session ⎕ED called from function

'Default' Allow Disallow

'Allow' Allow Allow

'Disallow' Disallow Disallow

There is no Principal Option.

Examples
A←3 11⍴'Hello World'

In the first example, ⎕ED will display the contents of A as an editable character array
which the user may change. The user can double-click on Hello to open an edit
window on an object named Hello (which will be a new function if Hello is
currently undefined). Furthermore, the user can enter any arbitrary name and double-
click to edit it. This may be undesirable in an application.

⎕ED 'A'

In the second example, the Edit window will display the contents of A as a ReadOnly
Character array. The user can still open a new edit by double-clicking Hello orWorld
but nothing else.

(⎕ED ⍠ 'ReadOnly' 1) 'A'

In the final example, the Edit window will display the contents of A as a ReadOnly
Character array and the user cannot open a new edit window.

(⎕ED ⍠('ReadOnly' 1)('EditName' 'Disallow'))'A'

Chapter 4: System Functions 341

Event Message R←⎕EM Y

Ymust be a simple non-negative integer scalar or vector of event codes. If Y is a
scalar, R is a simple character vector containing the associated event message. If Y is
a vector, R is a vector of character vectors containing the corresponding event
messages.

If Y refers to an undefined error code "n", the event message returned is "ERROR
NUMBER n".

See Programming Reference Guide: APL Error Messages

Example
⎕EM 11

DOMAIN ERROR

Event Number R←⎕EN

This simple integer scalar reports the identification number for the most recent event
which occurred, caused by an APL action or by an interrupt or by the ⎕SIGNAL
system function. Its value in a clear workspace is 0.

Example
÷0

DOMAIN ERROR: Divide by zero
÷0

∧
⎕EN

11

See Programming Reference Guide: APL Error Messages

Note: ⎕SIGNAL can be used to reset the value of this system constant.

Chapter 4: System Functions 342

Exception R←⎕EXCEPTION

This is a system object that identifies the most recent Exception thrown by a
Microsoft .NET object.

⎕EXCEPTION derives from the Microsoft .NET class System.Exception. Among its
properties are the following, all of which are strings:

Source
The name of the .NET namespace in which the exception was
generated

StackTrace The calling stack

Message The error message

⎕USING←'System'
DT←⎕NEW DateTime (100000 0 0)

EXCEPTION: Year, Month, and Day parameters describe an
un-representable DateTime.

DT←⎕NEW DateTime(100000 0 0)
∧
⎕EN

90

⎕EXCEPTION.Message
Year, Month, and Day parameters describe an un-
representable DateTime.

⎕EXCEPTION.Source
mscorlib

⎕EXCEPTION.StackTrace
at System.DateTime.DateToTicks(Int32 year,

Int32 month, Int32 day)

at System.DateTime..ctor(Int32 year,
Int32 month, Int32 day)

Similarly to GUI objects, ⎕EXCEPTION is not preserved across a save/load cycle if
the workspace is loaded in a different interpreter.

Note: ⎕SIGNAL can be used to reset the value of this system constant.

Chapter 4: System Functions 343

Expunge Object {R}←⎕EX Y

Ymust be a simple character scalar, vector or matrix, or a vector of character vectors
containing a list of names. R is a simple Boolean vector with one element per name in
Y.

Each name in Y is disassociated from its value if the active referent for the name is a
defined function, operator, variable or namespace.

The value of an element of R is 1 if the corresponding name in Y is now available for
use. This does not necessarily mean that the existing value was erased for that name.
A value of 0 is returned for an ill-formed name or for a distinguished name in Y. The
result is suppressed if not used or assigned.

Examples
⎕EX'VAR'
+⎕EX'FOO' '⎕IO' 'X' '123'

1 0 1 0

If a named object is being executed the existing value will continue to be used until
its execution is completed. However, the name becomes available immediately for
other use.

Examples
)SI

#.FOO[1]*

⎕VR'FOO'
∇ R←FOO

[1] R←10
∇
+⎕EX'FOO'

1
)SI

#.FOO[1]*

∇FOO[⎕]
defn error

FOO←1 2 3
→⎕LC

10
FOO

1 2 3

Chapter 4: System Functions 344

If a named object is an external variable, the external array is disassociated from the
name:

⎕XT'F'
FILES/COSTS

⎕EX'F' ⋄ ⎕XT'F'

If the named object is a GUI object, the object and all its children are deleted and
removed from the screen. The expression ⎕EX'.' deletes all GUI objects owned by
the current thread in the Root namespace but not those in sub-namespaces. In
addition, if this expression is executed by thread 0, it resets all the properties of '.'
to their default values. Furthermore, any unprocessed events in the event queue are
discarded.

If the named object is a shared variable, the variable is retracted.

If the named object is the last remaining external function of an auxiliary process, the
AP is terminated.

If the named object is the last reference into a dynamic link library, the DLL is freed.

Chapter 4: System Functions 345

Export Object {R}←{X}⎕EXPORT Y

⎕EXPORT is used to set or query the export type of a defined function (or operator)
referenced by the ⎕PATHmechanism.

Y is a character matrix or vector-of-vectors representing the names of functions and
operators whose export type is to be set or queried.

X is an integer scalar or vector (one per name in the namelist) indicating the export
type. X can currently be one of the values:

l 0 - not exported.
l 1 - exported (default).

A scalar or 1-element-vector type is replicated to conform with a multi-name list.

The result R is a vector that reports the export type of the functions and operators
named in Y. When used dyadically to set export type, the result is shy.

When the path mechanism locates a referenced function (or operator) in the list of
namespaces in the ⎕PATH system variable, it examines the function's export type:

0

This instance of the function is ignored and the search is resumed at the
next namespace in the ⎕PATH list. Type-0 is typically used for functions
residing in a utility namespace which are not themselves utilities, for
example the private sub-function of a utility function.

1
This instance of the function is executed in the namespace in which it was
found and the search terminated. The effect is exactly as if the function
had been referenced by its full path name.

Warning: The left domain of ⎕EXPORTmay be extended in future to include extra
types 2, 3,... (for example, to change the behaviour of the function). This means that,
while ⎕EXPORT returns a Boolean result in the first version, this may not be the case
in the future. If you need a Boolean result, use 0≠ or an equivalent.

(0≠⎕EXPORT ⎕nl 3 4)⌿⎕nl 3 4 ⍝ list of exported
⍝ functions and ops.

Chapter 4: System Functions 346

File Append Component {R}←X ⎕FAPPEND Y

Access code 8
Ymust be a simple integer scalar or a 1 or 2 element vector containing the file tie
number followed by an optional passnumber. If the passnumber is omitted it is
assumed to be zero. Subject to a few restrictions, Xmay be any array.

The shy result R is the number of the component to which X is written, and is 1
greater than the previously highest component number in the file, or 1 if the file is
new.

Examples
(1000?1000) ⎕FAPPEND 1

⎕←(2 3⍴⍳6) 'Geoff' (⎕OR'FOO') ⎕FAPPEND 1
12

⎕←A B C ⎕FAPPEND¨1
13 14 15

Dump←{
tie←⍺ ⎕FCREATE 0 ⍝ create file.
(⎕FUNTIE tie){}⍵ ⎕FAPPEND tie ⍝ append and untie.

}

File System Available R←⎕FAVAIL

⎕FAVAIL returns the scalar value 1 unless the component file system is unavailable
for some reason, in which case it returns scalar 0. If ⎕FAVAIL does return 0, most of
the component file system functions will generate the error message FILE SYSTEM
NOT AVAILABLE.

Chapter 4: System Functions 347

File Check and Repair R←{X} ⎕FCHK Y

⎕FCHK validates and repairs component files, and validates files associated with
external variables, following an abnormal termination of the APL process or
operating system.

Ymust be a simple character scalar or vector which specifies the name of the file to be
exclusively checked or repaired. For component files, the file must be named in
accordance with the operating system's conventions, and may be a relative or
absolute pathname. The file must exist and must not be tied. If no file extension is
supplied, the set of extensions specified by the CFEXT parameter are tried one after
another until the file is found or the set of extensions is exhausted. See Installation &
Configuration Guide: CFEXT Parameter.

For files associated with external variables, any filename extension must be specified
even if ⎕XT would not require it. The file must exist and must not currently be
associated with an external variable.

Options for ⎕FCHK are specified using the Variant operator ⍠ or by the optional left
argument X. The former is recommended but the older mechanism using the left
argument is still supported.

In either case, the default behaviour is as follows:

1. If the file appears to have been cleanly untied previously, return ⍬, i.e.
report that the file is good.

2. Otherwise, validate the file and return the appropriate result. If the file is
corrupt, no attempt is made to repair it.

The result R is a vector of the numbers of missing or damaged components. Rmay
include non-positive numbers of "pseudo components" that indicate damage to parts
of the file other than in specific components:

0 ACCESS MATRIX.

¯1 Free-block tree.

¯2 Component index tree.

Other negative numbers represent damage to the file metadata; this set may be
extended in the future.

Chapter 4: System Functions 348

Specifying options using Variant
Using Variant, the options are as follows:

l Task
l Repair
l Force

Rebuild causes the file indices to be discarded and rebuilt. Repair only takes place on
files which have been checked and found to be damaged. It involves a rebuild, but
that only takes place if it is needed. Note that Repair and Force only apply if Task is
'Scan'.

Task

Scan
causes the file to be checked and optionally repaired (see
'Repair' below)

Rebuild causes the file to be unconditionally rebuilt

Repair (principle option)

0 do not repair

1 causes the file to be repaired if damage is found

Force

0
do not validate the file if it appears to have been properly
closed

1 validate the file even if it appears to have been properly closed

Default values are highlighted thus in the above tables.

Examples
To check a file and attempt to fix it if damage is found:

(⎕FCHK ⍠ 1)'suspect.dcf'

To forcibly check a file and attempt to fix it if damage is found:

(⎕FCHK ⍠ ('Repair' 1)('Force'1))'suspect.dcf'

Chapter 4: System Functions 349

Specifying options using a left argument
Using the optional left-argument, Xmust be a vector of zero or more character vectors
from among 'force', 'repair' and 'rebuild', which determine the detailed
operation of the function. Note that these options are case-insensitive.

l If X contains 'force', ⎕FCHK will validate the file even if it appears to
have been cleanly untied.

l If X contains 'repair', ⎕FCHK will repair the file, following validation,
if it appears to be damaged. This option may be used in conjunction with
'force'.

l If X contains 'rebuild', ⎕FCHK will repair the file unconditionally.

Following a check of the file, a non-null result indicates that the file is damaged.

Following a repair of the file, the result indicates those components that could not be
recovered. Un-recovered components will give a FILE COMPONENT DAMAGED
error if read but may be replaced without error.

Repair can recover only check-summed components from the file, i.e. only those
components that were written with the checksum option enabled (see File Properties
on page 372).

Following an operating system crash, repair may result in one or more individual
components being rolled back to a previous version or not recovered at all, unless
Journaling levels 2 or 3 were also set when these components were written.

Chapter 4: System Functions 350

File Copy R←X ⎕FCOPY Y

Access Code: 4609
Ymust be a simple integer scalar or 1 or 2-element vector containing the file tie
number and optional passnumber. The file need not be tied exclusively.

X is a character vector containing the name of a new file to be copied to. If no file
extension is supplied, the first extension specified by the CFEXT parameter will be
added. See Installation & Configuration Guide: CFEXT Parameter.

⎕FCOPY creates a copy of the tied file specified by Y, named X.

The new file X will have the same component level information, including the user
number and update time as the original. The operating system file creation,
modification and access times will be set to the time at which the copy occurred.

Unless otherwise specified (see File Properties below) the new file X will have the
same file properties as the original, except that it will be a large-span file regardless
of the span of the original.

The result R is the file tie number associated with the new file X.

Note that the Access Code is 4609, which is the sum of the Access Codes for
⎕FREAD (1), ⎕FRDCI (512) and ⎕FRDAC (4096).

Note also that although the file need not be tied exclusively, the ⎕FCOPY function
will not yield the file to other APL processes while it is running, and it may take
some considerable time to run in the case of a large component file.

Example
told←'oldfile32'⎕FTIE 0
'S' ⎕FPROPS told

32
tnew←'newfile64' ⎕FCOPY told

'S' ⎕FPROPS tnew
64

If X specifies the name of an existing file, the operation fails with a FILE NAME
ERROR.

Note: This operation is atomic. If an error occurs during the copy operation (such as
disk full) or if a strong interrupt is issued, the copy will be aborted and the new file X
will not be created.

Chapter 4: System Functions 351

File Properties
⎕FCOPY allows you to specify properties for the new file via the variant operator ⍠
used with the following options:

l 'J' - journaling level; a numeric value.
l 'C' - checksum level; 0 or 1.
l 'Z' - compression; 0 or 1.
l 'U' - Unicode; 0 or 1
l 'S' - File Size (span); 64

The Principal Option is as follows:

l 0 - sets ('J' 0) ('C' 0)
l 1 - sets ('J' 1) ('C' 1)
l 2 - sets ('J' 2) ('C' 1)
l 3 - sets ('J' 3) ('C' 1)

Examples
newfid←'newfile' (⎕FCOPY ⍠3) 1

'SEUJCZ' ⎕FPROPS newfid
64 0 1 3 1 0

Alternatively:

JFCOPY←⎕FCOPY ⍠ 3

will name a variant of ⎕FCREATE which will create component file with level 3
journaling, and checksum enabled. Then:

newfid←'newfile' JFCOPY 1

Note: Setting ('U' 0) (no Unicode support) is discouraged as it may cause the
copy to fail with a TRANSLATION ERROR. Similarly using a Classic interpreter to
⎕FCOPY files may result in TRANSLATION ERRORs.

Chapter 4: System Functions 352

File Create {R}←X ⎕FCREATE Y

Ymust be a simple integer scalar or a 1 or 2 element vector. The first element is the
file tie number. The second element, if specified, must be 641.

The file tie numbermust not be the tie number associated with another tied file.

Xmust be either:

a. a simple character scalar or vector which specifies the name of the file to be
created. If no file extension is supplied, the first extension specified by the
CFEXT parameter will be added. See Installation & Configuration Guide:
CFEXT Parameter.

b. a vector of length 1 or 2 whose items are:

i. a simple character scalar or vector as above.
ii. an integer scalar specifying the file size limit in bytes.

The newly created file is tied for exclusive use.

The shy result of ⎕FCREATE is the tie number of the new file.

Automatic Tie Number Allocation
A tie number of 0 as argument to a create or tie operation, allocates, and returns as an
explicit result, the first (closest to zero) available tie number. This allows you to
simplify code. For example:

from:

tie←1+⌈/0,⎕FNUM ⍝ With next available number,
file ⎕FCREATE tie ⍝ ... create file.

to:

tie←file ⎕FCREATE 0 ⍝ Create with first available..

Examples
'..\BUDGET\SALES' ⎕FCREATE 2 ⍝ Windows
'../budget/SALES.85' ⎕FCREATE 2 ⍝ UNIX

'COSTS' 200000 ⎕FCREATE 4 ⍝ max size 200000

1This element sets the span of the file which in earlier Versions of Dyalog APL could be 32 or 64.
Small-span (32-bit) component files may no longer be created and this element is retained only for
backwards compatibility of code.

Chapter 4: System Functions 353

File Properties
⎕FCREATE allows you to specify properties for the newly created file via the variant
operator ⍠ used with the following options:

l 'J' - journaling level; a numeric value
l 'C' - checksum level; 0 or 1
l 'Z' - compression; 0 or 1
l 'U' - Unicode; 0 or 1
l 'S' - File Size (span); 64

The Principal Option is as follows:

l 0 - sets ('J' 0) ('C' 0)
l 1 - sets ('J' 1) ('C' 1)
l 2 - sets ('J' 2) ('C' 1)
l 3 - sets ('J' 3) ('C' 1)

Examples
'newfile' (⎕FCREATE⍠3) 0

1
'SEUJCZ' ⎕FPROPS 1

64 0 1 3 1 0

Alternatively:

JFCREATE←⎕FCREATE ⍠ 3

will name a variant of ⎕FCREATE which will create component file with level 3
journaling, and checksum enabled. Then:

'newfile'JFCREATE 0
1

Chapter 4: System Functions 354

File Drop Component {R}←⎕FDROP Y

Access code 32
Ymust be a simple integer vector of length 2 or 3 whose elements are:

[1] a file tie number

[2]

a number specifying the position and number of components to be
dropped. A positive value indicates that components are to be removed
from the beginning of the file; a negative value indicates that
components are to be removed from the end of the file

[3] an optional passnumber which if omitted is assumed to be zero

The shy result of a ⎕FDROP is a vector of the numbers of the dropped components.
This is analogous to ⎕FAPPEND in that the result is potentially useful for updating
some sort of dictionary:

cnos,←vec ⎕FAPPEND¨tie ⍝ Append index to dictionary

cnos~←⎕FDROP tie,-⍴vec ⍝ Remove index from dict.

Note that the result vector, though potentially large, is generated only on request.

Examples
⎕FSIZE 1

1 21 5436 4294967295

⎕FDROP 1 3 ⋄ ⎕FSIZE 1
4 21 5436 4294967295

⎕FDROP 1 ¯2 ⋄ ⎕FSIZE 1
4 19 5436 4294967295

Chapter 4: System Functions 355

File Erase {R}←X ⎕FERASE Y

Access code 4
Ymust be a simple integer scalar or 1 or 2 element vector containing the file tie
number followed by an optional passnumber. If the passnumber is omitted it is
assumed to be zero. Xmust be a character scalar or vector containing the name of the
file associated with the tie number Y. This name must be identical with the name
used to tie the file, and the file must be exclusively tied. The file named in X is
erased and untied. See User Guide for file naming conventions under UNIX and
Windows.

The shy result of ⎕FERASE is the tie number of the erased file.

Examples
'SALES'⎕FERASE 'SALES' ⎕FTIE 0

'./temp' ⎕FCREATE 1
'temp' ⎕FERASE 1

FILE NAME ERROR
'temp'⎕FERASE 1
^

File History R←⎕FHIST Y

Access code 16384
Ymust be a simple integer vector of length 1 or 2 containing the file tie number and
an optional passnumber. If the passnumber is omitted it is assumed to be zero.

The result is a numeric matrix with shape (5 2) whose rows represent the most recent
occurrence of the following events.

1. File creation (see note)
2. (Undefined)
3. Last update of the access matrix
4. (Undefined)
5. Last update performed by ⎕FAPPEND, ⎕FCREATE, ⎕FDROP or

⎕FREPLACE

For each event, the first column contain the user number and the second a timestamp.
Like the timestamp reported by ⎕FRDCI this is measured in 60ths of a second since
1st January 1970 (UTC).

Currently, the second and fourth rows of the result (undefined) contain (0 0).

Chapter 4: System Functions 356

Note: ⎕FHIST collects information only if journaling and/or checksum is in
operation. If neither is in use, the collection of data for ⎕FHIST is disabled and its
result is entirely 0. If a file has both journaling and checksum disabled, and then
either is enabled, the collection of data for ⎕FHIST is enabled too. In this case, the
information in row 1 of ⎕FHIST relates to the most recent enabling ⎕FPROPS
operation rather than the original ⎕FCREATE.

In the examples that follow, the FHist function is used below to format the result of
⎕FHIST.

∇ r←FHist tn;cols;rows;fhist;fmt;ToTS;I2D
[1] rows←'Created' 'Undefined' 'Last ⎕FSTAC'
[2] rows,←'Undefined' 'Last Updated'
[3] cols←'User' 'TimeStamp'
[4] fmt←'ZI4,2(⊂-⊃,ZI2),⊂ ⊃,ZI2,2(⊂:⊃,ZI2)'
[5] I2D←{+2 ⎕NQ'.' 'IDNToDate'⍵}
[6] ToTS←{d t←1 1 0 0 0⊂⍉⌊0 24 60 60 60⊤⍵
[7] ↓fmt ⎕FMT(0 ¯1↓↑I2D¨25568+,d),0 ¯1↓t}
[8] fhist←⎕FHIST tn
[9] fhist[;2]←ToTS fhist[;2]
[10] fhist[;1]←⍕¨fhist[;1]
[11] r←((⊂''),rows),cols⍪fhist

∇

Examples
'c:\temp'⎕FCREATE 1 ⋄ FHist 1

User TimeStamp
Created 0 2012-01-14 12:29:53
Undefined 0 1970-01-01 00:00:00
Last ⎕FSTAC 0 2012-01-14 12:29:53
Undefined 0 1970-01-01 00:00:00
Last Updated 0 2012-01-14 12:29:53

(⍳10)⎕FAPPEND 1 ⋄ FHist 1
User TimeStamp

Created 0 2012-01-14 12:29:53
Undefined 0 1970-01-01 00:00:00
Last ⎕FSTAC 0 2012-01-14 12:29:53
Undefined 0 1970-01-01 00:00:00
Last Updated 0 2012-01-14 12:29:55

⎕FUNTIE 1

'c:\temp'⎕FCREATE 1 ⋄ FHist 1
User TimeStamp

Created 0 2012-01-14 12:29:53
Undefined 0 1970-01-01 00:00:00
Last ⎕FSTAC 0 2012-01-14 12:29:53
Undefined 0 1970-01-01 00:00:00
Last Updated 0 2012-01-14 12:29:55

Chapter 4: System Functions 357

File Hold {R}←⎕FHOLD Y

Access code 2048
This function holds component file(s) and/or external variable(s). It is used to
synchronise access to resources shared between multiple cooperating Dyalog
processes. It is not intended to synchronise access between Dyalog threads; for this
purpose you should use :Hold.

For a multi-threaded and multi-process application, a single ⎕FHOLD is used to
synchronise inter-process access, while :Hold is used in multiple threads to
synchronise access between threads in the same process. See also Programming
Reference Guide: Hold Statement.

If applied to component files, then Y is an integer scalar, vector, or one-row matrix of
file tie numbers, or a two-row matrix whose first row contains file tie numbers and
whose second row contains passnumbers.

If applied to external variables, then Y is a simple scalar character, a character vector,
a non-simple scalar character vector, or a vector of character vectors that specifies one
or more names of external variable(s) (NOT the file names associated with those
variables). Note that when Y is simple, each character in Y is interpreted as a variable
name. If applied to component files and external variables, Y is a vector whose
elements are either integer scalars representing tie numbers, or character scalars or
vectors containing names of external variables.

The effect is as follows:

1. All of the user's preceding holds (if any) are released, whether referenced in
Y or not.

2. Execution is suspended until the designated files are free of holds by any
other task.

3. When all the designated files are free, execution proceeds. Until the hold is
released, other tasks using ⎕FHOLD on any of the designated files will wait.

If Y is empty, all of the user's preceding holds (if any) are released, and execution
continues. A hold is released by any of the following:

l Another ⎕FHOLD
l Untying or retying all the designated files. If some but not all are untied or
retied, they become free for another task but the hold persists for those that
remain tied.

l Termination of APL.
l Any untrapped error or interrupt.
l A return to immediate execution.

Chapter 4: System Functions 358

Note that a hold is not released by a request for input through ⎕ or ⍞.

⎕FHOLD is generally useful only when called from a defined function, as holds set in
immediate execution (desk calculator) mode are released immediately.

If Y is a matrix, the shy result R is Y[1;]. Otherwise, the shy result R is Y.

Examples:
⎕FHOLD 1

⎕FHOLD ⍬

⎕FHOLD ⊂'XTVAR'

⎕FHOLD 1 2,[0.5]0 16385

⎕FHOLD 1 'XTVAR'

Chapter 4: System Functions 359

Fix Script {R}←{X}⎕FIX Y

⎕FIX establishes Namespaces, Classes, Interfaces and functions from the script
specified by Y in the workspace.

In this section, the term namespace covers scripted Namespaces, Classes and
Interfaces.

Ymay be a simple character vector, or a vector of character vectors or character
scalars. The value of X determines what Y may contain.

If Y is a simple character vector, it must start with "file://", followed by the name of a
file which must exist. The contents of the file must follow the same rules that apply
to Y when Y is a vector of character vectors or scalars. The file name can be relative
or absolute; when considering cross-platform portability, using "/" as the directory
delimiter is recommended, although "\" is also valid underWindows.

If specified, Xmust be a numeric scalar. It may currently take the value 0, 1 or 2. If
not specified, the value is assumed to be 1.

If X is 0, Ymust specify a single valid namespace which may or may not be named,
or a file containing such a definition. If so, the shy result R contains a reference to the
namespace. Even if the namespace is named, it is not established per se, although it
will exist for as long as at least one reference to it exists.

If X is 1, Ymust specify a single valid namespace which may or may not be named,
or a file containing such a definition. If so, the shy result R contains a reference to the
namespace. If Y contains the definition of a named namespace, the namespace is
established in the workspace.

If X is 2, Ymay specify a mixture of any number of valid, named namespaces or
function definitions, or a file containing such a definition. A function definition must
be either that of a dfn or a tradfn only and must be of the same form as when they are
defined in namespace scripts. If so, the shy result R is a vector of character vectors,
containing the names of all of the objects that have been established in the
workspace; the order of the names in R is not defined. Currently 2 ⎕FIX is not
certain to be an atomic operation, although this might change in future versions.

Chapter 4: System Functions 360

Example 1
In the first example, the Class specified by Y is named (MyClass) but the result of
⎕FIX is discarded. The end-result is that MyClass is established in the workspace
as a Class.

⎕←⎕FIX ':Class MyClass' ':EndClass'
#.MyClass

Example 2
In the second example, the Class specified by Y is named (MyClass) and the result
of ⎕FIX is assigned to a different name (MYREF). The end-result is that a Class
named MyClass is established in the workspace, and MYREF is a reference to it.

MYREF←⎕FIX ':Class MyClass' ':EndClass'
)CLASSES

MyClass MYREF
⎕NC'MyClass' 'MYREF'

9.4 9.4
MYREF

#.MyClass
MYREF≡MyClass

1

Example 3
In the third example, the left-argument of 0 causes the named Class MyClass to be
visible only via the reference to it (MYREF). It is there, but hidden.

MYREF←0 ⎕FIX ':Class MyClass' ':EndClass'
)CLASSES

MYREF
MYREF

#.MyClass

Example 4
The fourth example illustrates the use of un-named Classes.

src←':Class' '∇Make n'
src,←'Access Public' 'Implements Constructor'
src,←'⎕DF n' '∇' ':EndClass'
MYREF←⎕FIX src
)CLASSES

MYREF
MYINST←⎕NEW MYREF'Pete'
MYINST

Pete

Chapter 4: System Functions 361

Example 5
In the final example, the left argument of 2 allows a script containing multiple
objects to be fixed:

src←':Namespace andys' '∇foo' '2' '∇'
src,←':EndNamespace' 'dfn←{⍺ ⍵}' '∇r←tfn'
src,←'r←33' '∇' ':Class c1' '∇goo' '1'
src,←'∇' ':EndClass'
≢⎕←2⎕fix src

c1 tfn dfn andys
4

Restriction
⎕FIX is unable to fix a namespace from Y when Y specifies a multi-line dfn which is
preceded by a ⋄ (diamond separator).

⎕FIX':Namespace iaK' 'foo' 'a←1 ⋄ adfn←{' '⍵' ' }'
DOMAIN ERROR: There were errors processing the script

⎕FIX':Namespace iaK' 'foo' 'a←1 ⋄ adfn←{' '⍵' ' }'
∧

Component File Library R←⎕FLIB Y

Ymust be a simple character scalar or vector which specifies the name of the
directory whose APL component files are to be listed. If Y is empty, the current
working directory is assumed.

The result R is a character matrix containing the names of the component files in the
directory with one row per file. The number of columns is given by the longest file
name. Each file name is prefixed by Y followed by a directory delimiter character.
The ordering of the rows is not defined.

If there are no APL component files accessible to the user in the directory in question,
the result is an empty character matrix with 0 rows and 0 columns.

Examples
⎕FLIB ''

SALESFILE
COSTS

⎕FLIB '.'
./SALESFILE
./COSTS

⎕FLIB '../budget'
../budget/SALES.85
../budget/COSTS.85

Chapter 4: System Functions 362

Format (Monadic) R←⎕FMT Y

Ymay be any array. R is a simple character matrix which appears the same as the
default display of Y. If Y contains control characters from ⎕TC, they will be resolved.

Examples
A←⎕FMT '∩' ,⎕TC[1],'∘'

⍴A
1 1

A
⍝

A←⎕VR 'FOO'

A
∇ R←FOO

[1] R←10
∇

⍴A
31

B←⎕FMT A

B
∇ R←FOO

[1] R←10
∇

⍴B
3 12

Chapter 4: System Functions 363

Format (Dyadic) R←X ⎕FMT Y

Ymust be a simple array of rank not exceeding two, or a non-simple scalar or vector
whose items are simple arrays of rank not exceeding two. The simple arrays in Y
must be homogeneous, either character or numeric. All numeric values in Ymust be
simple; if Y contains any complex numbers, dyadic ⎕FMT will generate a DOMAIN
ERROR. Xmust be a simple character vector. R is a simple character matrix.

X is a format specification that defines how columns of the simple arrays in Y are to
appear. A simple scalar in Y is treated as a one-element matrix. A simple vector in Y
is treated as a one-column matrix. Each column of the simple arrays in Y is formatted
in left-to-right order according to the format specification in X taken in left-to-right
order and used cyclically if necessary.

R has the same number of rows as the longest column (or implied column) in Y, and
the number of columns is determined from the format specification.

The format specification consists of a series of control phrases, with adjacent phrases
separated by a single comma, selected from the following:

rAw Alphanumeric format

rEw.s Scaled format

rqFw.d Decimal format

rqG⍞pattern⍞ Pattern

rqIw Integer format

Tn Absolute tabulation

Xn Relative tabulation

⍞t⍞ Text insertion

(Alternative surrounding pairs for Pattern or Text insertion are < >, ⊂ ⊃, ⎕ ⎕ or
¨ ¨.)

Chapter 4: System Functions 364

where:

r
is an optional repetition factor indicating that the format phrase
is to be applied to r columns of Y

q
is an optional usage of qualifiers or affixtures from those
described below.

w
is an integer value specifying the total field width per column of
Y, including any affixtures.

s
is an integer value specifying the number of significant digits in
Scaled format; s must be less than w-1

d
is an integer value specifying the number of places of decimal in
Decimal format; d must be less than w.

n

is an integer value specifying a tab position relative to the
notional left margin (for T-format) or relative to the last
formatted position (for X-format) at which to begin the next
format.

t
is any arbitrary text excluding the surrounding character pair.
Double quotes imply a single quote in the result.

pattern see following section G format

Qualifiers q are as follows:
B leaves the field blank if the result would otherwise be zero.

C
inserts commas between triads of digits starting from the
rightmost digit of the integer part of the result.

Km
scales numeric values by 1Em where m is an integer; negation
may be indicated by ¯ or - preceding the number.

L left justifies the result in the field width.
Ov⍞t⍞ replaces specific numeric value v with the text t.

S⍞p⍞

substitutes standard characters. p is a string of pairs of symbols
enclosed between any of the Text Insertion delimiters. The first
of each pair is the standard symbol and the second is the symbol
to be substituted. Standard symbols are:
* overflow fill character
. decimal point
, triad separator for C qualifier
0 fill character for Z qualifier
_ loss of precision character

Z
fills unused leading positions in the result with zeros (and
commas if C is also specified).

9 digit selector

Chapter 4: System Functions 365

Affixtures are as follows:

M⍞t⍞
prefixes negative results with the text t instead of the negative
sign.

N⍞t⍞ post-fixes negative results with the text t
P⍞t⍞ prefixes positive or zero results with the text t.
Q⍞t⍞ post-fixes positive or zero results with the text t.

R⍞t⍞

presets the field with the text t which is repeated as necessary
to fill the field. The text will be replaced in parts of the field
filled by the result, including the effects of other qualifiers and
affixtures except the B qualifier

The surrounding affixture delimiters may be replaced by the alternative pairs
described for Text Insertion.

Examples
A vector is treated as a column:

'I5' ⎕FMT 10 20 30
10
20
30

The format specification is used cyclically to format the columns of the right
argument:

'I3,F5.2' ⎕FMT 2 4⍴⍳8
1 2.00 3 4.00
5 6.00 7 8.00

The columns of the separate arrays in the items of a non-simple right argument are
formatted in order. Rows in a formatted column beyond the length of the column are
left blank:

'2I4,F7.1' ⎕FMT (⍳4)(2 2⍴ 0.1×⍳4)
1 0 0.2
1 0 0.4
3
4

Characters are right justified within the specified field width, unless the L qualifier is
specified:

'A2' ⎕FMT 1 6⍴'SPACED'
S P A C E D

Chapter 4: System Functions 366

If the result is too wide to fit within the specified width, the field is filled with
asterisks:

'F5.2' ⎕FMT 0.1×5 1000 ¯100
0.50

Relative tabulation (X-format) identifies the starting position for the next format
phrase relative to the finishing position for the previous format, or the notional left
margin if none. Negative values are permitted providing that the starting position is
not brought back beyond the left margin. Blanks are inserted in the result, if
necessary:

'I2,X3,3A1' ⎕FMT (⍳3)(2 3⍴'TOPCAT')
1 TOP
2 CAT
3

Absolute tabulation (T-format) specifies the starting position for the next format
relative to the notional left margin. If position 0 is specified, the next format starts at
the next free position as viewed so far. Blanks are inserted into the result as required.
Over-written columns in the result contain the most recently formatted array columns
taken in left-to-right order:

X←'6I1,T5,A1,T1,3A1,T7,F5.1'

X ⎕FMT (1 6⍴⍳6)('*')(1 3⍴'ABC')(22.2)
ABC4*6 22.2

If the number of specified significant digits exceeds the internal precision, low order
digits are replaced by the symbol _:

'F20.1' ⎕FMT 1E18÷3
3333333333333333__._

The Text Insertion format phrase inserts the given text repeatedly in all rows of the
result:

MEN←3 5⍴'FRED BILL JAMES'
WOMEN←2 5⍴'MARY JUNE '

'5A1,<|>' ⎕FMT MEN WOMEN
FRED |MARY |
BILL |JUNE |
JAMES| |

Chapter 4: System Functions 367

The last example also illustrates that a Text Insertion phrase is used even though the
data is exhausted. The following example illustrates effects of the various qualifiers:

X←'F5.1,BF6.1,X1,ZF5.1,X1,LF5.1,K3CS<.,,.>F10.1'

X ⎕FMT ⍉5 3⍴¯1.5 0 25
¯1.5 ¯1.5 ¯01.5 ¯1.5 ¯1.500,0
0.0 000.0 0.0 0,0

25.0 25.0 025.0 25.0 25.000,0

Affixtures allow text to be included within a field. The field width is not extended
by the inclusion of affixtures. N and Q affixtures shift the result to the left by the
number of characters in the text specification. Affixtures may be used to enclose
negative results in parentheses in accordance with common accounting practice:

'M<(>N<)>Q< >F9.2' ⎕FMT 150.3 ¯50.25 0 1114.9
150.30
(50.25)

0.00
1114.90

One or more format phrases may be surrounded by parentheses and preceded by an
optional repetition factor. The format phrases within parentheses will be re-used the
given number of times before the next format phrase is used. A Text Insertion phrase
will not be re-used if the last data format phrase is preceded by a closing parenthesis:

'I2,2(</>,ZI2)' ⎕FMT 1 3⍴⌽100|3↑⎕TS
20/07/89

G Format
Only the B, K, S and O qualifiers are valid with the G option

⍞pattern⍞ is an arbitrary string of characters, excluding the delimiter characters.
Characters '9' and 'Z' (unless altered with the S qualifier) are special and are known as
digit selectors.

The result of a G format will have length equal to the length of the pattern.

The data is rounded to the nearest integer (after possible scaling). Each digit of the
rounded data replaces one digit selector in the result. If there are fewer data digits
than digit selectors, the data digits are padded with leading zeros. If there are more
data digits than digit selectors, the result will be filled with asterisks.

A '9' digit selector causes a data digit to be copied to the result.

Chapter 4: System Functions 368

A 'Z' digit selector causes a non-zero data digit to be copied to the result. A zero data
digit is copied if and only if digits appear on each side of it. Otherwise a blank
appears. Similarly text between digit selectors appears only if digits appear on each
side of the text. Text appearing before the first digit selector or after the last will
always appear in the result.

Examples
'G⊂99/99/99⊃'⎕FMT 0 100 100 ⊥8 7 89

08/07/89

'G⊂ZZ/ZZ/ZZ⊃'⎕FMT 80789 + 0 1
8/07/89
8/07/9

'G⊂Andy ZZ Pauline ZZ⊃' ⎕FMT 2721.499 2699.5
Andy 27 Pauline 21
Andy 27

⍴⎕←'K2G⊂DM Z.ZZZ.ZZ9,99⊃' ⎕FMT 1234567.89 1234.56
DM 1.234.567,89
DM 1.234,56
2 15

An error will be reported if:

l Numeric data is matched against an A control phrase.
l Character data is matched against other than an A control phrase.
l The format specification is ill-formed.
l For an F control phrase, d>w-2
l For an E control phrase, s>w-2

O Format Qualifier
The O format qualifier replaces a specific numeric value with a text string and may be
used in conjunction with the E, F, I and G format phrases.

An O-qualifier consists of the letter "O" followed by the optional numeric value
which is to be substituted (if omitted, the default is 0) and then the text string within
pairs of symbols such as "<>". For example:

O - qualifier Description
O<nil> Replaces the value 0 with the text "nil"
O42<N/A> Replaces the value 42 with the text "N/A"
O0.001<1/1000> Replaces the value 0.001 with the text "1/1000"

Chapter 4: System Functions 369

The replacement text is inserted into the field in place of the numeric value. The text
is normally right-aligned in the field, but will be left-aligned if the L qualifier is also
specified.

It is permitted to specify more than one O-qualifier within a single phrase.

The O-qualifier is ⎕CT sensitive.

Examples
'O<NIL>F7.2'⎕FMT 12.3 0 42.5

12.30
NIL

42.50

'O<NIL>LF7.2'⎕FMT 12.3 0 42.5
12.30
NIL
42.50

'O<NIL>O42<N/A>I6'⎕FMT 12 0 42 13
12

NIL
N/A
13

'O99<replace>F20.2'⎕fmt 99 100 101
replace
100.00
101.00

⎕CT and ⎕DCT are implicit arguments of ⎕FMT with the O format qualifier.

Chapter 4: System Functions 370

File Names R←⎕FNAMES

The result is a character matrix containing the names of all tied files, with one file
name per row. The number of columns is that required by the longest file name.

A file name is returned precisely as it was specified when the file was tied. If no files
are tied, the result is a character matrix with 0 rows and 0 columns. The rows of the
result are in the order in which the files were tied.

Examples
'/usr/pete/SALESFILE' ⎕FSTIE 16

'../budget/COSTFILE' ⎕FSTIE 2

'PROFIT' ⎕FCREATE 5

⎕FNAMES
/usr/pete/SALESFILE
../budget/COSTFILE
PROFIT

⍴⎕FNAMES
3 19

⎕FNUMS,⎕FNAMES
16 /usr/pete/SALESFILE
2 ../budget/COSTFILE
5 PROFIT

Chapter 4: System Functions 371

File Numbers R←⎕FNUMS

The result is an integer vector of the file tie number of all tied files. If no files are
tied, the result is empty. The elements of the result are in the order in which the files
were tied.

Examples
'/home/pete/SALESFILE' ⎕FSTIE 16

'../budget/COSTFILE' ⎕FSTIE 2

'PROFIT' ⎕FCREATE 5

⎕FNUMS
16 2 5

⎕FNUMS,⎕FNAMES
16 /home/pete/SALESFILE
2 ../budget/COSTFILE
5 PROFIT

⎕FUNTIE ⎕FNUMS
⍴⎕FNUMS

0

Chapter 4: System Functions 372

File Properties R←X ⎕FPROPS Y

Access Code 1 (to read) or 8192 (to change properties)
⎕FPROPS reports and sets the properties of a component file.

Ymust be a simple integer scalar or 1 or 2-element vector containing the file tie
number followed by an optional passnumber. If the passnumber is omitted, it is
assumed to be 0.

Xmust be a simple character scalar or vector containing one or more valid Identifiers
listed in the table below, or a 2-element nested vector which specifies an Identifier
and a (new) value for that property. To set new values for more than one property, X
must be is a vector of 2-element vectors, each of which contains an Identifier and a
(new) value for that property.

If the left argument is a simple character array, the result R contains the current values
for the properties identified by X. If the left argument is nested, the result R contains
the previous values for the properties identified by X.

Identifier Property Description / Legal Values

S
File Size
(read only)

32 = Small-span Component Files (<4GB)
64 = Large-span Component Files

E
Endian-ness
(read only)

0 = Little-endian
1 = Big-endian

U Unicode 0 = Characters will be written as type 82 arrays
1 = Characters will be written as Unicode arrays

J Journaling

0 = Disable Journaling
1 = Enable APL crash proof Journaling
2 = Enable System crash proof Journaling; repair
needed on recovery
3 = Enable full System crash proof Journaling

C Checksum 0 = Disable checksum
1 = Enable checksum

Z Compression 0 = Disable compression
1 = Enable compression

Chapter 4: System Functions 373

The default properties for a newly created file are as follows:

l S = 64
l U = 1 (in Unicode Edition) or 0 (in Classic Edition)
l J = 1
l C = 1
l Z = 0
l E depends upon the computer architecture.

Note that the defaults for C and J can be overridden by calling ⎕FCREATE via the
Variant operator ⍠. For further information, see File Create on page 352.

Journaling Levels
Level 1 journaling (APL crash-proof) automatically protects a component file from
damage in the event of abnormal termination of the APL process. The file state will
be implicitly committed between updates and an incomplete update will
automatically be rolled forward or back when the file is re-tied. In the event of an
operating system crash the file may be more seriously damaged. If checksumwas also
enabled it may be repaired using ⎕FCHK but some components may be restored to a
previous state or not restored at all.

Level 2 journaling (system crash-proof – repair needed on recovery) extends level 1
by ensuring that a component file is fully repairable using ⎕FCHK with no
component loss in the event of an operating system failure. If an update was in
progress when the system crashed the affected component will be rolled back to the
previous state. Tying and modifying such a file without first running ⎕FCHKmay
however render it un-repairable.

Level 3 journaling (system crash-proof) extends level 2 by protecting a component
file from damage in the event of abnormal termination of the APL process and also
the operating system. Rollback of an incomplete update will be automatic and no
explicit repair will be needed.

Enabling journaling on a component file will reduce performance of file updates;
higher journaling levels have a greater impact.

Journaling levels 2 and 3 cannot be set unless the checksum option is also enabled.

The default level of journaling may be changed using the APL_FCREATE_
PROPS_J parameter (see Dyalog for Microsoft Windows Installation and
Configuration Guide: Configuration Parameters for more information).

Chapter 4: System Functions 374

Checksum Option
The checksum option is enabled by default. This enables a damaged file to be
repaired using ⎕FCHK. It will however reduce the performance of file updates
slightly and result in larger component files. The default may be changed using the
APL_FCREATE_PROPS_C parameter (See User Guide).

Enabling the checksum option on an existing non-empty component file will result
in all previously written components without a checksum being check-summed and
converted. This operation which will take place when ⎕FPROPS is changed, may not
therefore be instantaneous.

Journaling and checksum settings may be changed at any time a file is exclusively
tied.

Example
tn←'myfile64' ⎕FCREATE 0
'SEUJ' ⎕FPROPS tn

64 0 1 0

The following expression disables Unicode and switches Journaling on. The
function returns the previous settings:

('U' 0)('J' 1) ⎕FPROPS tn
1 0

Note that to set the value of just a single property, the following two statements are
equivalent:

'J' 1 ⎕FPROPS tn
(,⊂'J' 1) ⎕FPROPS tn

Properties may be read by a task with ⎕FREAD permission (access code 1), and set by
a task with ⎕FSTAC access (8192). To set the value of the Journaling property, the
file must be exclusively tied.

Recommendation
It is recommended that all component files are protected by a minimum of Level 1
Journalling and have Checksum enabled.

Unprotected files should only be used:

l for temporary work files where speed is paramount and integrity a secondary
issue

l or where compatibility with Versions of Dyalog prior to Version 12.0 is
required

Chapter 4: System Functions 375

This recommendation is given for the following reasons:

l Unprotected files are easily damaged by abnormal termination of the
interpreter

l They cannot be repaired using ⎕FCHK
l They do not support ⎕FHIST
l They are not well supported by the Dyalog File Server (DFS)
l They do not support compression of components
l Additional features added in future may not be supported

Compression Option
Components are compressed using the LZ4 compressor which delivers a medium
level of compression, but is considered to be very fast compared to other algorithms.

Compression is intended to deliver a performance gain reading and writing large
components on fast computers with slow (e.g. network) file access. Conversely, on a
slow computer with fast file access compression may actually reduce read/write
performance. For this reason it is optional at the component level.

The default for the 'Z' property is 0 which means no compression; 1 means
compression. When written, components are compressed or not according to the
current value of the 'Z' property. Changing this property does not change any
components already in the file.

A component file may therefore contain a mixture of normal and compressed
components. Note that only the data in file components are compressed, the file
access matrix and other header information is not compressed.

When read, compressed components are decompressed regardless of the value of the
'Z' property.

An exclusive tie is not needed to change the file property.

Compression is not supported for files in which both Journalling and Checksum are
disabled.

Chapter 4: System Functions 376

Floating-Point Representation ⎕FR

The value of ⎕FR determines the way that floating-point operations are performed.

If ⎕FR is 645, all floating-point calculations are performed using IEEE 754 64-bit
floating-point operations and the results of these operations are represented internally
using binary641 floating-point format.

If ⎕FR is 1287, all floating-point calculations are performed using IEEE 754-2008
128-bit decimal floating-point operations and the results of these operations are
represented internally using decimal1282 format.

Note that when you change ⎕FR, its new value only affects subsequent floating-
point operations and results. Existing floating-point values stored in the workspace
remain unchanged.

The default value of ⎕FR (its value in a clear ws) is configurable.

⎕FRmay be localised. If so, like most other system variables, it inherits its initial
value from the global environment.

However:Although ⎕FR can vary, the system is not designed to allow "seamless"
modification during the running of an application and the dynamic alteration of is
not recommended. Strange effects may occur. For example, the type of a constant
contained in a line of code (in a function or class), will depend on the value of ⎕FR
when the function is fixed.

Also note:

⎕FR←1287
x←1÷3

⎕FR←645
x=1÷3

1

1http://en.wikipedia.org/wiki/Double_precision_floating-point_format

2http://en.wikipedia.org/wiki/Decimal128_floating-point_format

Chapter 4: System Functions 377

The decimal number has 17 more 3's. Using the tolerance which applies to binary
floats (type 645), the numbers are equal. However, the "reverse" experiment yields 0,
as tolerance is much narrower in the decimal universe:

⎕FR←645
x←1÷3
⎕FR←1287
x=1÷3

0

Since ⎕FR can vary, it will be possible for a single workspace to contain floating-
point values of both types (existing variables are not converted when ⎕FR is
changed). For example, an array that has just been brought into the workspace from
external storage may have a different type from ⎕FR in the current namespace.
Conversion (if necessary) will only take place when a new floating-point array is
generated as the result of "a calculation". The result of a computation returning a
floating-point result will not depend on the type of the arrays involved in the
expression: ⎕FR at the time when a computation is performed decides the result type,
alone.

Structural functions generally do NOT change the type, for example:

⎕FR←1287
x←1.1 2.2 3.3

⎕FR←645
⎕DR x

1287
⎕DR 2↑x

1287

128-bit decimal numbers not only have greater precision (roughly 34 decimal digits);
they also have significantly larger range – from ¯1E6145 to 1E6145. Loss of
precision is accepted on conversion from 645 to 1287, but the magnitude of a number
may make the conversion impossible, in which case a DOMAIN ERROR is issued:

⎕FR←1287
x←1E1000
⎕FR←645 ⋄ x+0

DOMAIN ERROR

Chapter 4: System Functions 378

When experimenting with ⎕FR it is important to note that numeric constants entered
into the Session are evaluated (and assigned a data type) before the line is actually
executed. This means that constants are evaluated according to the value of ⎕FR that
pertained before the line was entered. For example:

⎕FR←645
⎕FR

645

⎕FR←1287 ⋄ ⎕DR 0.1
645

⎕DR 0.1
1287

WARNING: The use of COMPLEX numbers when ⎕FR is 1287 is not
recommended, because:

any 128-bit decimal array into which a complex number is inserted or appended will
be forced in its entirety into complex representation, potentially losing precision.

All comparisons are done using ⎕DCT when ⎕FR is 1287, and the default value of
1E¯28 is equivalent to 0 for complex numbers.

File Read Access R←⎕FRDAC Y

Access code 4096
Ymust be a simple integer scalar or 1 or 2 element vector containing the file tie
number followed by an optional passnumber. If the passnumber is omitted it is
assumed to be zero. The result is the access matrix for the designated file.

For details see Programming Reference Guide: Component Files.

Examples
⎕FRDAC 1

28 2105 16385
0 2073 16385

31 ¯1 0

Chapter 4: System Functions 379

File Read Component Information R←⎕FRDCI Y

Access code 512
Ymust be a simple integer vector of length 2 or 3 containing the file tie number,
component number and an optional passnumber. If the passnumber is omitted it is
assumed to be zero.

The result is a 3 element numeric vector containing the following information:

1. the size of the component in bytes (i.e. how much disk space it occupies).
2. the user number of the user who last updated the component.
3. the time of the last update in 60ths of a second since 1st January 1970

(UTC).

Example
⎕FRDCI 1 13

2200 207 3.702094494E10

Chapter 4: System Functions 380

File Read Components R←⎕FREAD Y

Access code 1
Y is a 2 or 3 item vector containing the file tie number, the component number(s), and
an optional passnumber. If the passnumber is omitted it is assumed to be zero. All
elements of Ymust be integers.

The second item in Ymay be scalar which specifies a single component number or a
vector of component numbers. If it is a scalar, the result is the value of the array that is
stored in the specified component on the tied file. If it is a vector, the result is a vector
of such arrays.

Note that any invocation of ⎕FREAD is an atomic operation. Thus if compnos is a
vector, the statement:

⎕FREAD tie compnos passno

will return the same result as:

{⎕FREAD tie ⍵ passno}¨compnos

However, the first statement will, in the case of a share-tied file, prevent any potential
intervening file access from another user (without the need for a ⎕FHOLD). It will
also perform slightly faster, especially when reading from a share-tied file.

Examples
⍴SALES←⎕FREAD 1 241

3 2 12

GetFile←{⎕io←0 ⍝ Extract contents.
tie←⍵ ⎕fstie 0 ⍝ new tie number.
fm to←2↑⎕fsize tie ⍝ first and next component.
cnos←fm+⍳to-fm ⍝ vector of component nos.
cvec←⎕fread tie cnos ⍝ vector of components.
cvec⊣⎕funtie tie ⍝ ... untie and return.

}

Chapter 4: System Functions 381

File Rename {R}←X ⎕FRENAME Y

Access code 128
Ymust be a simple 1 or 2 element integer vector containing a file tie number and an
optional passnumber. If the passnumber is omitted it is assumed to be zero.

Xmust be a simple character scalar or vector containing the new name of the file.
This name must be in accordance with the operating system's conventions, and may
be specified with a relative or absolute pathname. If no file extension is supplied, the
first extension specified by the CFEXT parameter will be added. See Installation &
Configuration Guide: CFEXT Parameter.

The file being renamed must be tied exclusively.

The shy result of ⎕FRENAME is the tie number of the file.

Examples
'SALES' ⎕FTIE 1
'PROFIT' ⎕FTIE 2

⎕FNAMES
SALES
PROFIT

'SALES.85' ⎕FRENAME 1
'../profits/PROFITS.85' ⎕FRENAME 2

⎕FNAMES
SALES.85
../profits/PROFITS.85

Rename←{
fm to←⍵
⎕FUNTIE to ⎕FRENAME fm ⎕FTIE 0

}

Chapter 4: System Functions 382

File Replace Component {R}←X ⎕FREPLACE Y

Access code 16
Ymust be a simple 2 or 3 element integer vector containing the file tie number, the
component number, and an optional passnumber. If the passnumber is omitted it is
assumed to be zero. The component number specified must lie within the file's
component number limits.

X is any array (including, for example, the ⎕OR of a namespace), and overwrites the
value of the specified component. The component information (see File Read
Component Information on page 379) is also updated.

The shy result of ⎕FREPLACE is the file index (component number of replaced
record).

Example
SALES←⎕FREAD 1 241

(SALES×1.1) ⎕FREPLACE 1 241

Define a function to replace (index, value) pairs in a component file JMS.DCF:

Frep←{
tie←⍺ ⎕FTIE 0
_←{⍵ ⎕FREPLACE tie ⍺}/¨⍵
⎕FUNTIE tie

}

'jms'Frep(3 'abc')(29 'xxx')(7 'yyy')

Chapter 4: System Functions 383

File Resize {R}←{X}⎕FRESIZE Y

Access code 1024
Ymust be a simple integer scalar or 1 or 2 element vector containing the file tie
number followed by an optional passnumber. If the passnumber is omitted it is
assumed to be zero.

X is an integer that specifies the maximum permitted size of the file in bytes. The
value 0 means the maximum possible size of file.

An attempt to update a component file that would cause it to exceed its maximum
size will fail with a FILE FULL error (21). A side effect of ⎕FRESIZE is to cause
the file to be compacted. This process removes any gaps in the file caused by
replacing a component with a shorter array. Any interrupt entered at the keyboard
during the compaction is ignored. Note that if the left argument is omitted, the file is
simply compacted and the maximum file size remains unchanged.

During compaction, the file is restructured by reordering the components and by
amalgamating the free areas at the end of the file. The file is then truncated and
excess disk space is released back to the operating system. For a large file with many
components, this process may take a significant time.

The shy result of ⎕FRESIZE is the tie number of the file.

Example
'test'⎕FCREATE 1 ⋄ ⎕FSIZE 1

1 1 120 1.844674407E19
(10 1000⍴1.1)⎕FAPPEND 1 ⋄ ⎕FSIZE 1

1 2 80288 1.844674407E19

100000 ⎕FRESIZE 1 ⍝ Limit size to 100000 bytes

(10 1000⍴1.1)⎕FAPPEND 1
FILE FULL

(10 1000⍴1.1)⎕FAPPEND 1
∧

⎕FRESIZE 1 ⍝ Force file compaction.

Chapter 4: System Functions 384

File Size R←⎕FSIZE Y

Ymust be a simple integer scalar or 1 or 2 element vector containing the file tie
number followed by an optional passnumber. If the passnumber is omitted it is
assumed to be zero. The result is a 4 element numeric vector containing the
following:

Element Description

1 the number of first component

2 1 + the number of the last component, (i.e. the result of the next
⎕FAPPEND)

3 the current size of the file in bytes

4 the file size limit in bytes

Example
⎕FSIZE 1

1 21 65271 4294967295

File Set Access {R}←X ⎕FSTAC Y

Access code 8192
Ymust be a simple integer scalar or 1 or 2 element vector containing the file tie
number followed by an optional passnumber. If the passnumber is omitted it is
assumed to be zero.

Xmust be a valid access matrix, i.e. a 3-column integer matrix with any number of
rows. The function sets access control for the specified file operations (1st column),
users (3rd column), with the specified passnumbers (2nd column). Note that a 0 in the
1st column specifies all file operations, a ¯1 in the 2nd column specifies that no
passnumber is required, and a 0 in the 3rd column specifies all users. For further
details, see Programming Reference Guide: Component Files.

The shy result of ⎕FSTAC is the tie number of the file.

Examples
'SALES' ⎕FCREATE 1
(3 3⍴28 2105 16385 0 2073 16385 31 ¯1 0) ⎕FSTAC 1
((⎕FRDAC 1)⍪21 2105 16385) ⎕FSTAC 1

(1 3⍴0 ¯1 0)⎕FSTAC 2 ⍝ Let everyone do anything

Chapter 4: System Functions 385

File Share Tie {R}←X ⎕FSTIE Y

Ymust be 0 or a simple 1 or 2 element integer vector containing an available file tie
number to be associated with the file for further file operations, and an optional
passnumber. If the passnumber is omitted it is assumed to be zero. The tie number
must not already be associated with a tied file.

Xmust be a simple character scalar or vector which specifies the name of the file to be
tied. The file must be named in accordance with the operating system's conventions,
and may be specified with a relative or absolute pathname. If no file extension is
supplied, the set of extensions specified by the CFEXT parameter are tried one after
another until the file is found or the set of extensions is exhausted. See Installation &
Configuration Guide: CFEXT Parameter.

The file must exist and be accessible by the user. If it is already tied by another task,
it must not be tied exclusively.

The shy result of ⎕FSTIE is the tie number of the file.

Automatic Tie Number Allocation
A tie number of 0 as argument to a create, share tie or exclusive tie operation,
allocates the first (closest to zero) available tie number and returns it as an explicit
result. This allows you to simplify code. For example:

from:

tie←1+⌈/0,⎕FNUMS ⍝ With next available number,
file ⎕FSTIE tie ⍝ ... share tie file.

to:

tie←file ⎕FSTIE 0 ⍝ Tie with 1st available number.

Example
'SALES' ⎕FSTIE 1

'../budget/COSTS' ⎕FSTIE 2

Chapter 4: System Functions 386

Exclusive File Tie {R}←X ⎕FTIE Y

Access code 2
Ymust be 0 or a simple 1 or 2 element integer vector containing an available file tie
number to be associated with the file for further file operations, and an optional
passnumber. If the passnumber is omitted it is assumed to be zero. The tie number
must not already be associated with a share tied or exclusively tied file.

Xmust be a simple character scalar or vector which specifies the name of the file to be
exclusively tied. The file must be named in accordance with the operating system's
conventions, and may be a relative or absolute pathname. If no file extension is
supplied, the set of extensions specified by the CFEXT parameter are tried one after
another until the file is found or the set of extensions is exhausted. See Installation &
Configuration Guide: CFEXT Parameter.

The file must exist and the user must have write access to it. It may not already be
tied by another user.

Automatic Tie Number Allocation
A tie number of 0 as argument to a create, share tie or exclusive tie operation,
allocates the first (closest to zero) available tie number, and returns it as an explicit
result. This allows you to simplify code. For example:

from:

tie←1+⌈/0,⎕FNUMS ⍝ With next available number,
file ⎕FTIE tie ⍝ ... tie file.

to:

tie←file ⎕FTIE 0 ⍝ Tie with first available number.

The shy result of ⎕FTIE is the tie number of the file.

Examples
'SALES' ⎕FTIE 1

'../budget/COSTS' ⎕FTIE 2

'../budget/expenses' ⎕FTIE 0
3

Chapter 4: System Functions 387

File Untie {R}←⎕FUNTIE Y

Ymust be a simple integer scalar or vector (including Zilde). Files whose tie
numbers occur in Y are untied. Other elements of Y have no effect.

If Y is empty, no files are untied, but all the interpreter's internal file buffers are
flushed and the operating system is asked to flush all file updates to disk. This
special facility allows the programmer to add extra security (at the expense of
performance) for application data files.

The shy result of ⎕FUNTIE is a vector of tie numbers of the files actually untied.

Example
⎕FUNTIE ⎕FNUMS ⍝ Unties all tied files

⎕FUNTIE ⍬ ⍝ Flushes all buffers to disk

Fix Definition {R}←⎕FX Y

Y is the representation form of a function or operator which may be:

l its canonical representation form similar to that produced by ⎕CR except
that redundant blanks are permitted other than within names and constants,
and the first and last rows may start with a del symbol (∇).

l its nested representation form similar to that produced by ⎕NR except that
redundant blanks are permitted other than within names and constants, and
the first and last items may be del (∇) symbols.

l its object representation form produced by ⎕OR.
l its vector representation form similar to that produced by ⎕VR except that
additional blanks are permitted other than within names and constants.

⎕FX attempts to create (fix) a function or operator in the workspace or current
namespace from the definition given by Y. ⎕IO is an implicit argument of ⎕FX. Note
that ⎕FX does not update the source of a scripted namespace, or of class or instance;
the only two methods of updating the source of scripted objects is via the Editor, or
by calling ⎕FIX.

If the function or operator is successfully fixed, R is a simple character vector
containing its name and the result is shy. Otherwise R is an integer scalar containing
the (⎕IO dependent) index of the row of the canonical representation form in which
the first error preventing its definition is detected. In this case the result R is not shy.

Chapter 4: System Functions 388

Functions and operators which are pendent, that is, in the state indicator without a
suspension mark (*), retain their original definition until they complete, or are
cleared from the state indicator. All other occurrences of the function or operator
assume the new definition. The function or operator will fail to fix if it has the same
name as an existing variable, or a visible label.

Instances R←⎕INSTANCES Y

⎕INSTANCES returns a list all the current instances of the Class specified by Y.

Ymust be a reference.

If Y is a reference to a Class, R is a vector of references to all existing Class Instances
of Y. Otherwise, R is empty.

Examples
This example illustrates a simple inheritance tree or Class hierarchy. There are 3
Classes, namely:

Animal

Bird (derived from Animal)

Parrot (derived from Bird)

:Class Animal
...
:EndClass ⍝ Animal

:Class Bird: Animal
...
:EndClass ⍝ Bird

:Class Parrot: Bird
...
:EndClass ⍝ Parrot

Eeyore←⎕NEW Animal
Robin←⎕NEW Bird
Polly←⎕NEW Parrot

⎕INSTANCES Parrot
#.[Parrot]

⎕INSTANCES Bird
#.[Bird] #.[Parrot]

⎕INSTANCES Animal
#.[Animal] #.[Bird] #.[Parrot]

Chapter 4: System Functions 389

Eeyore.⎕DF 'eeyore'
Robin.⎕DF 'robin'
Polly.⎕DF 'polly'

 ⎕INSTANCES Parrot
polly

⎕INSTANCES Bird
robin polly

⎕INSTANCES Animal
eeyore robin polly

Index Origin ⎕IO

⎕IO determines the index of the first element of a non-empty vector.

⎕IOmay be assigned the value 0 or 1. The value in a clear workspace is 1.

⎕IO is an implicit argument of any function derived from the Axis operator ([K]), of
the monadic functions Fix (⎕FX), Grade Down (⍒), Grade Up (⍋), Index Generator
(⍳), Roll (?), and of the dyadic functions Deal (?), Grade Down (⍒), Grade Up (⍋),
Index (⌷), Index Of (⍳), Indexed Assignment, Indexing, Pick (⊃) and Transpose (⍉).

Examples
⎕IO←1
⍳5

1 2 3 4 5

⎕IO←0
⍳5

0 1 2 3 4

+/[0]2 3⍴⍳6
3 5 7

'ABC',[¯.5]'='
ABC
===

Chapter 4: System Functions 390

JSON Convert R←{X}⎕JSON Y

This function imports and exports data in JavaScript Object Notation (JSON) Data
Interchange Format1.

If specified, Xmust be a numeric scalar with the value 0 (import JSON) or 1 (export
JSON). If X is not specified and Y is a character array, X is assumed to be 0 (import);
otherwise it is assumed to be 1 (export).

Other options for ⎕JSON are Format and Compact which are specified using the
Variant operator ⍠. See Variant on page 183.The Principle Option is Format.

JSON Import (X is 0)
Y is a character vector or matrix in JSON format. There is an implied newline
character between each row of a matrix.

The content of the result R depends upon the Format variant which may be 'D'
(the default) or 'M'.

If Format is 'D' (which stands for "data") the JSON described by Y is converted to
APL object(s) and R is an array or a namespace containing arrays and sub-
namespaces.

l JSON objects are created as APL namespaces.
l JSON null is converted to the enclosed character vector ⊂'null'.
l JSON true is converted to the enclosed character vector ⊂'true'
l JSON false is converted to the enclosed character vector ⊂'false'.
l If the JSON source contains object names which are not valid APL names
they are converted to APL objects with mangled names. See JSON Name
Mangling on page 399. 7162⌶ can be used to obtain the original name. See
JSON Translate Name on page 255.

1IETF RFC 7159 - The JavaScript Object Notation (JSON) Data Interchange Format - is a widely
supported, text based data interchange format for the portable representation of structured data; any
application which conforms to the standard may exchange data with any other.

Chapter 4: System Functions 391

If Format is 'M' (which stands for "matrix") the result R is a matrix whose columns
contain the following:

[;1] depth

[;2] name (for JSON object members)

[;3] value

[;4] JSON type (integer: see below)

l The representation of null, true and false are the same as for Format 'D'.
l Object names are reported as specified in the JSON text; they are not
mangled as they are for Format 'D'.

JSON types are as follows:

Type Description

1 Object

2 Array

3 Numeric

4 String

5 Null

6 Boolean (true / false)

7 JavaScript Object (export only)

Table 16: JSON data types

Duplicate Names
The JSON standard says that members of a JSON object should have unique names
and that different implementations behave differently when there are duplicates.
Dyalog handles duplicate names as follows:

l No error is generated
l For Format 'D', the last member encountered is used and all previous
members with the same name are discarded

l For Format 'M' all duplicate members are recorded in the result matrix

Chapter 4: System Functions 392

Examples
⍴JSON

18 19
JSON

{
"a": {

"b": [
"string 1",
"string 2"

],
"c": true,
"d": {

"e": false,
"f⍺": [

"string 3",
123,
1000.2,
null

]
}

}
}

Chapter 4: System Functions 393

Import as Data (Format 'D')
j←⎕JSON JSON
j

#.[JSON object]
j.⎕NL 9

a
j.a.⎕NL 2

b
c

j.a.b
┌────────┬────────┐
│string 1│string 2│
└────────┴────────┘

j.a.c
┌────┐
│true│
└────┘

j.a.⎕NL 9
d

j.a.d.⎕NL 2 ⍝ Note that f⍺ is an invalid APL name
e
⍙f⍙9082⍙

j.a.d.e
┌─────┐
│false│
└─────┘

j.a.d.⍙f⍙9082⍙
┌────────┬───┬──────┬──────┐
│string 3│123│1000.2│┌────┐│
│ │ │ ││null││
│ │ │ │└────┘│
└────────┴───┴──────┴──────┘

Chapter 4: System Functions 394

Import as Matrix (Format 'M')
(⎕JSON⍠'M')JSON

┌─┬──┬────────┬─┐
│0│ │ │1│
├─┼──┼────────┼─┤
│1│a │ │1│
├─┼──┼────────┼─┤
│2│b │ │2│
├─┼──┼────────┼─┤
│3│ │string 1│4│
├─┼──┼────────┼─┤
│3│ │string 2│4│
├─┼──┼────────┼─┤
│2│c │┌────┐ │6│
│ │ ││true│ │ │
│ │ │└────┘ │ │
├─┼──┼────────┼─┤
│2│d │ │1│
├─┼──┼────────┼─┤
│3│e │┌─────┐ │6│
│ │ ││false│ │ │
│ │ │└─────┘ │ │
├─┼──┼────────┼─┤
│3│f⍺│ │2│
├─┼──┼────────┼─┤
│4│ │string 3│4│
├─┼──┼────────┼─┤
│4│ │123 │3│
├─┼──┼────────┼─┤
│4│ │1000.2 │3│
├─┼──┼────────┼─┤
│4│ │┌────┐ │5│
│ │ ││null│ │ │
│ │ │└────┘ │ │
└─┴──┴────────┴─┘

Chapter 4: System Functions 395

JSON Export (X is 1)
Y is the data to be exported as JSON and may be an array, a namespace or a matrix
representation of JSON such as would have been produced by JSON Import with
Format 'M'. Y is interpreted according to the Format variant which may be 'D'
(the default) or 'M'.

⎕JSON will signal DOMAIN ERROR if Y is incompatible with the specified (or
implied) value of Format.

If Format is M, the data values in Y[;3]must correspond precisely with the JSON
types specified in Y[;4]as specified in the following table.

Y[;4] (Type) Y[;3] (Value)

1 Empty array

2 Empty array

3 Numeric scalar

4 Character vector

5 Null

6 Enclosed character vector

7 Enclose character vector

R is a character vector whose content depends upon the value of the Compact
variant.

If Compact is 0, the JSON text is padded with spaces and new lines for readability.

If Compact is 1 (the default) the JSON text is compacted into its minimal form.

The name of any namespace member that begins with ⍙ and otherwise conforms to
the conversion format used for JSON object names will be demangled.

Chapter 4: System Functions 396

Example
j ⍝ See above

#.[JSON object]
⍴JS←1 ⎕JSON j

94
JS

{"a":{"b":["string 1","string 2"],"c":true,"d":
{"e":false,"f⍺":["string 3",123,1000.2,null]}}}

1(⎕JSON⍠'Compact' 0) j
{

"a": {
"b": [

"string 1",
"string 2"

],
"c": true,
"d": {

"e": false,
"f⍺": [

"string 3",
123,
1000.2,
null

]
}

}
}

If there are any mis-matches between the values in Y[;3] and the types in Y[;4],
⎕JSON will signal DOMAIN ERROR and report the first row where there is a mis-
match (⎕IO sensitive) as illustrated in the following example.

Example
M←(⎕JSON⍠'Format' 'M')'{"values": [75, 300]}'
M

┌─┬──────┬───┬─┐
│0│ │ │1│
├─┼──────┼───┼─┤
│1│values│ │2│
├─┼──────┼───┼─┤
│2│ │75 │3│
├─┼──────┼───┼─┤
│2│ │300│3│
└─┴──────┴───┴─┘

Chapter 4: System Functions 397

M[3;3]←⊂'75' ⍝ character not numeric

M ⍝ but looks the same as before
┌─┬──────┬───┬─┐
│0│ │ │1│
├─┼──────┼───┼─┤
│1│values│ │2│
├─┼──────┼───┼─┤
│2│ │75 │3│
├─┼──────┼───┼─┤
│2│ │300│3│
└─┴──────┴───┴─┘

1 (⎕JSON⍠ 'Format' 'M')M
DOMAIN ERROR: Value does not match the specified type in
row 3

1(⎕JSON⍠'Format' 'M')M
∧

JavaScript Objects
The following example illustrates how JavaScript objects may be exported.

In the example, the object is a JavaScript function which is specified by the contents
of an enclosed character vector. Note that in this case Dyalog performs no validation
of the code itself.

Example
'Slider' ⎕NS ''
Slider.range←⊂'true' ⍝ Note the ⊂
Slider.min←0
Slider.max←500
Slider.values←75 300

fn1←' function(event, ui) {'
fn2←'$("#amount").val("$" + ui.values[0] +'
fn2,←' " - $" + ui.values[1]);}'

Slider.slide←,/fn1 fn2 ⍝ Enclosed character vec

⍴JS←1 ⎕JSON Slider
159

JS
{"max":500,"min":0,"range":true,"slide": function(event,
ui) {$(\"#amount\").val(\"$\" + ui.values[0] + \" -
$\" + ui.values[1]);},"values":[75,300]}

Chapter 4: System Functions 398

Restrictions and Limitations
The JSON standard describes a limited set of data types and JSON does not provide a
general APL import/export mechanism. In particular:

Not all APL arrays are representable in JSON.
For example, arrays with more than one dimension cannot be represented in JSON.
Of course, this does mean that applications using JSON are unlikely to use such
objects; you probably will need rearrange your data into the format that is expected
by the receiving application. In the case of a 2-dimensional matrix, a split will give
you a vector of tuples that a JSON application is likely to expect:

⎕JSON 3 4⍴⍳12
DOMAIN ERROR: Array unsupported by JSON

⎕JSON 3 4⍴⍳12
∧
⎕JSON ↓3 4⍴⍳12

[[1,2,3,4],[5,6,7,8],[9,10,11,12]]

Not all JSON types have exact APL equivalents
The JSON standard includes Boolean values true and false which are distinct from
numeric values 1 and 0, and have no direct APL equivalent.

To represent JSON true and false types this implementation adopts the convention of
using APL arrays ⊂'true' and ⊂'false' respectively. These arrays cannot
otherwise be represented in JSON and allow true and false to be uniquely identified.

Not all names are valid APL names.
The names of JSON object members which would not be valid for APL are modified.
See JSON Name Mangling below.

Chapter 4: System Functions 399

JSON Name Mangling
When Dyalog converts from JSON to APL data, and a member of a JSON object has
a name which is not a valid APL name, it is renamed.

Example:
In this example, the JSON describes an object containing two numeric items, one
named a (which is a valid APL name) and the other named 2a (which is not):

{"a": 1, "2a": 2}

When this JSON is imported as an APL namespace using ⎕JSON, Dyalog converts
the name 2a to a valid APL name. The name mangling algorithm creates a name
beginning with ⍙.

(⎕JSON'{"a": 1, "2a": 2}').⎕NL 2
a
⍙2a

When Dyalog exports JSON it performs the reverse name mangling, so:

1 ⎕JSON ⎕JSON'{"a": 1, "2a": 2}'
{"a":1,"2a":2}

Should you need to create and decode these names directly,7162⌶ provides the same
name mangling and un-mangling operations. See JSON Translate Name on page
255.

0(7162⌶)'2a'
⍙2a

1(7162⌶)'⍙2a'
2a

Chapter 4: System Functions 400

Key Label R←⎕KL Y

Classic Edition only.
Y is a simple character vector or a vector of character vectors containing Input Codes
for Keyboard Shortcuts. In the Classic Edition, keystrokes are associated with
Keyboard Shortcuts by the Input Translate Table.

R is a simple character vector or a vector of character vectors containing the labels
associated with the codes. If Y specifies codes that are not defined, the
corresponding elements of R are the codes in Y.

⎕KL provides the information required to build device-independent help messages
into applications, particularly full-screen applications using ⎕SM and ⎕SR.

Examples:
⎕KL 'RC'

Right

⎕KL 'ER' 'EP' 'QT' 'F1' 'F13'
Enter Esc Shift+Esc F1 Shift+F1

Line Count R←⎕LC

This is a simple vector of line numbers drawn from the state indicator (See
Programming Reference Guide: The State Indicator). The most recently activated
line is shown first. If a value corresponds to a defined function in the state indicator,
it represents the current line number where the function is either suspended or
pendent.

The value of ⎕LC changes immediately upon completion of the most recently
activated line, or upon completion of execution within ⍎ or ⎕. If a ⎕STOP control is
set, ⎕LC identifies the line on which the stop control is effected. In the case where a
stop control is set on line 0 of a defined function, the first entry in ⎕LC is 0 when the
control is effected.

The value of ⎕LC in a clear workspace is the null vector.

Chapter 4: System Functions 401

Examples
)SI

#.TASK1[5]*
⍎
#.BEGIN[3]

⎕LC
5 3

→⎕LC
⎕LC

⍴⎕LC
0

Load Workspace ⎕LOAD Y

Ymust be a simple character scalar or vector containing the identification of a saved
workspace.

If Y is ill-formed or does not identify a saved workspace or the user account does not
have access permission to the workspace, a DOMAIN ERROR is reported.

Otherwise, the active workspace is replaced by the workspace identified in Y. The
active workspace is lost. If the loaded workspace was saved by the)SAVE system
command, the latent expression (⎕LX) is immediately executed, unless APL was
invoked with the -x option. If the loaded workspace was saved by the ⎕SAVE
system function, execution resumes from the point of exit from the ⎕SAVE function,
with the result of the ⎕SAVE function being 0, running in the same namespace in
which the ⎕SAVE was executed.

The workspace identification and time-stamp when saved is not displayed.

If the workspace contains any GUI objects whose Visible property is 1, these
objects will be displayed. If the workspace contains a non-empty ⎕SM but does not
contain an SM GUI object, the form defined by ⎕SM will be displayed in a window
on the screen.

Under UNIX, the interpreter attempts to open the file whose name matches the
contents of Y. UnderWindows, unless Y contains at least one ".", the interpreter will
append the file extension ".DWS" to the name.

Chapter 4: System Functions 402

Lock Definition {R}←{X}⎕LOCK Y

Ymust be a simple character scalar, or vector which is taken to be the name of a
defined function or operator in the active workspace. ⎕LOCK does not apply to dfns
or derived functions.

The active referent to the name in the workspace is locked. Stop, trace and monitor
settings, established by the ⎕STOP, ⎕TRACE and ⎕MONITOR functions, are
cancelled.

The optional left argument X specifies to what extent the function code is hidden. X
may be 1, 2 or 3 (the default) with the following meaning:

1. The object may not be displayed and you may not obtain its character form
using ⎕CR, ⎕VR or ⎕NR.

2. Execution cannot be suspended with the locked function or operator in the
state indicator. On suspension of execution the state indicator is cut back to
the statement containing the call to the locked function or operator.

3. Both 1 and 2 apply. You can neither display the locked object nor suspend
execution within it.

Locks are additive, so that

1 ⎕LOCK'FOO' ⋄ 2 ⎕LOCK'FOO'

is equivalent to:

3 ⎕LOCK'FOO'

The shy result R is the lock state (1,2 or 3) of Y.

A DOMAIN ERROR is reported if Y is ill-formed.

Examples
⎕FX'r←foo' 'r←10'
⎕NR'foo'

r←foo r←10
⍴⎕NR'foo'

2
⎕LOCK'foo'
⍴⎕NR'foo'

0

Chapter 4: System Functions 403

Latent Expression ⎕LX

This may be a character vector or scalar representing an APL expression. The
expression is executed automatically when the workspace is loaded. If APL is
invoked using the -x flag, this execution is suppressed.

The value of ⎕LX in a clear workspace is ''.

Example
⎕LX←'''GOOD MORNING PETE'''

)SAVE GREETING
GREETING saved Tue Sep 8 10:49:29 1998

)LOAD GREETING
./GREETING saved Tue Sep 8 10:49:29 1998
GOOD MORNING PETE

Map File R←{X}⎕MAP Y

⎕MAP function associates a mapped file with an APL array in the workspace.

Two types of mapped files are supported; APL and raw. An APLmapped file contains
the binary representation of a Dyalog APL array, including its header. A file of this
type must be created using the utility function ∆MPUT (supplied in the util
workspace). When you map an APL file, the rank, shape and data type of the array is
obtained from the information on the file.

A raw mapped file is an arbitrary collection of bytes. When you map a raw file, you
must specify the characteristics of the APL array to be associated with this data. In
particular, the data type and its shape.

The type of mapping is determined by the presence (raw) or absence (APL) of the left
argument to ⎕MAP.

Chapter 4: System Functions 404

The right argument Y specifies the name of the file to be mapped and, optionally, the
access type and a start byte in the file. Ymay be a simple character vector, or a 2 or 3-
element nested vector containing:

1. file name (character scalar/vector)
2. access code (character scalar/vector) : one of : 'R' or 'r' (read-only

access), 'W' or 'w' (read-write access). If not specified, the file is mapped
read-only.

3. start byte offset (integer scalar/vector). This is only applicable for read-only
access and is not supported for read-write access. It must be a multiple of
the word size (4 on 32-bit systems, 8 on 64-bit systems). The default is 0.

If you map a file with read-only access you may modify the corresponding array in
the workspace, however your changes are not written back to the file.

If X is specified, it defines the type and shape to be associated with raw data on file. X
must be an integer scalar or vector. The first item of X specifies the data type and must
be one of the following values:

Classic Edition 11, 82, 83, 163, 323 or 645

Unicode Edition 11, 80, 83, 160, 163, 320, 323 or 645

The values are more fully explained in Data Representation (Monadic) on page 336.

Following items determine the shape of the mapped array. A value of ¯1 on any (but
normally the first) axis in the shape is replaced by the system to mean: read as many
complete records from the file as possible. Only one axis may be specified in this
way. Note that if X is a singleton, the data on the file is mapped as a scalar and only
the first value on the file is accessible.

If no left argument is given, file is assumed to contain a simple APL array, complete
with header information (type, rank, shape, etc.). Such mapped files may only be
updated by changing the associated array using indexed/pick assignment: var
[a]←b, the new values must be of the same type as the originals.

Note that a raw mapped file may be updated only if its file offset is 0.

Chapter 4: System Functions 405

Examples
Map raw file as a read-only vector of doubles:

vec←645 ¯1 ⎕MAP'c:\myfile'

Map raw file as a 20-column read-write matrix of 1-byte integers:

mat←83 ¯1 20 ⎕MAP'c:\myfile' 'W'

Replace some items in mapped file:

mat[2 3;4 5]←2 2⍴⍳4

Map bytes 100-160 in raw file as a 5×2 read-only matrix of doubles:

dat←645 5 2 ⎕MAP'c:\myfile' 'R' 80

Put simple 4-byte integer array on disk ready for mapping:

(⊃83 323 ⎕DR 2 3 4⍴⍳24)∆MPUT'c:\myvar'

Then, map a read-write variable:

var←⎕MAP'c:\myvar' 'w'

Note that a mapped array need not be named. In the following example, a 'raw' file is
mapped, summed and released, all in a single expression:

+/163 ¯1 ⎕MAP'c:\shorts.dat'
42

If you fail to specify the shape of the data, the data on file will be mapped as a scalar
and only the first value in the file will be accessible:

83 ⎕MAP 'myfile' ⍝ map FIRST BYTE of file.
¯86

Compatibility between Editions
In the Unicode Edition ⎕MAP will fail with a TRANSLATION ERROR (event number
92) if you attempt to map an APL file which contains character data type 82.

In order for the Unicode Edition to correctly interpret data in a raw file that was
written using data type 82, the file may be mapped with data type 83 and the
characters extracted by indexing into ⎕AVU.

Chapter 4: System Functions 406

Make Directory {R}←{X}⎕MKDIR Y

This function creates new directories.

Y is a character vector or scalar containing a single directory name, or a vector of
character vectors containing zero or more directory names. Names must conform to
the naming rules of the host Operating System.

By default, for each file in Y the path must exist and the base name must not exist (see
File Name Parts on page 482), otherwise an error is signalled. The optional left
argument X is the numeric scalar 0, 1, 2 or 3 which amends this behaviour as shown
in the following table. If omitted, it is assumed to be 0.

0 Default behaviour.

1
No action is taken if a directory specified by Y already exists. The return
value may be used to determine whether a new directory was created or
not.

2
Any part of the paths specified in Y which does not already exist will be
created in preparation of creating the corresponding directory.

3 Combination of 1 and 2.

If Y specifies a single name, the shy result R is a scalar 1 if a directory was created or 0
if not. If Y is a vector of character vectors, R is a vector of 1s and 0s with the same
length as Y.

Examples
⎕NEXISTS '/Users/Pete/Documents/temp'

0
⎕←⎕MKDIR '/Users/Pete/Documents/temp'

1
⎕←⎕MKDIR '/Users/Pete/Documents/temp'

FILE NAME ERROR: Directory exists
⎕←⎕MKDIR'/Users/Pete/Documents/temp'

∧

⎕←⎕MKDIR'/Users/Pete/Documents/temp/t1/t2'
FILE NAME ERROR: Unable to create directory ("The system
cannot find the path specified.")

⎕←⎕MKDIR'/Users/Pete/Documents/temp/t1/t2'
∧

⎕←2 ⎕MKDIR'/Users/Pete/Documents/temp/t1/t2'
1

⊢⎕MKDIR'temp1' 'temp2'
1 1

Chapter 4: System Functions 407

Note
When multiple names are specified they are processed in the order given. If an error
occurs at any point whilst creating directories, processing will immediately stop and
an error will be signalled. The operation is not atomic; some directories may be
created before this happens. In the event of an error there will be no result and
therefore no indication of how many directories were created before the error
occurred.

Migration Level ⎕ML

⎕ML determines the degree of migration of the Dyalog APL language towards IBM's
APL2. Setting this variable to other than its default value of 1 changes the
interpretation of certain symbols and language constructs.

⎕ML←0 Original Native Dyalog

⎕ML←1 Z←∊R Monadic '∊' is interpreted as 'enlist' rather than 'type'.

⎕ML←2 Z←↑R Monadic '↑' is interpreted as 'first' rather than 'mix'.

Z←⊃R Monadic '⊃' is interpreted as 'mix' rather than 'first'.

Z←≡R
Monadic '≡' returns a positive rather than a negative value,
if its argument has non-uniform depth.

⎕ML←3
R←X⊂
[K]Y

Dyadic '⊂' follows the APL2 (rather than the original
Dyalog APL) convention.

⎕TC The order of the elements of ⎕TC is the same as in APL2.

Subsequent versions of Dyalog APL may provide further migration levels.

Examples
X←2(3 4)

⎕ML←0
∊X

0 0 0
↑X

2 0
3 4

⊃X
2

≡X
¯2

Chapter 4: System Functions 408

⎕ML←1
∊X

2 3 4
↑X

2 0
3 4

⊃X
2

≡X
¯2

⎕ML←2
∊X

2 3 4
↑X

2
⊃X

2 0
3 4

≡X
2

Chapter 4: System Functions 409

Set Monitor {R}←X ⎕MONITOR Y

Ymust be a simple character scalar or vector which is taken to be the name of a
visible defined function or operator.

Note that ⎕MONITOR does not apply to dfns or dops.

Xmust be a simple non-negative integer scalar or vector. R is a simple integer vector
of non-negative elements.

X identifies the numbers of lines in the function or operator named by Y on which a
monitor is to be placed. Numbers outside the range of line numbers in the function
or operator (other than 0) are ignored. The number 0 indicates that a monitor is to be
placed on the function or operator as a whole. The value of X is independent of ⎕IO.

R is a vector of numbers on which a monitor has been placed in ascending order. The
result is suppressed unless it is explicitly used or assigned. R will be empty for dfns
and dops.

The effect of ⎕MONITOR is to accumulate timing statistics for the lines for which the
monitor has been set. See Query Monitor on page 410 for details.

Examples
+(0,⍳10) ⎕MONITOR 'FOO'

0 1 2 3 4 5

Existing monitors are cancelled before new ones are set:

+1 ⎕MONITOR 'FOO'
1

All monitors may be cancelled by supplying an empty vector:

⍬ ⎕MONITOR 'FOO'

Monitors may be set on a locked function or operator, but no information will be
reported. Monitors are saved with the workspace.

Chapter 4: System Functions 410

Query Monitor R←⎕MONITOR Y

Ymust be a simple character scalar or vector which is taken to be the name of a
visible defined function or operator.

Note that ⎕MONITOR does not apply to dfns or dops.

R is a simple non-negative integer matrix of 5 columns with one row for each line in
the function or operator Y which has the monitor set, giving:

Column 1 Line number

Column 2 Number of times the line was executed

Column 3 CPU time in milliseconds

Column 4 Elapsed time in milliseconds

Column 5 Reserved

The value of 0 in column one indicates that the monitor is set on the function or
operator as a whole. R will be empty for dfns and dops.

Example
∇ FOO

[1] A←?25 25⍴100
[2] B←⌹A
[3] C←⌹B
[4] R1←⌊0.5+A+.×B
[5] R2←A=C

∇

(0,⍳5) ⎕MONITOR 'FOO' ⍝ Set monitor

FOO ⍝ Run function

⎕MONITOR 'FOO' ⍝ Monitor query
0 1 1418 1000 0
1 1 83 0 0
2 1 400 0 0
3 1 397 0 0
4 1 467 1000 0
5 1 100 0 0

Chapter 4: System Functions 411

Name Association {R}←{X}⎕NA Y

⎕NA provides access from APL to compiled functions within a library. A library is
implemented according to the Operating System as follows:

l a Dynamic Link Library(DLL) under Windows
l a Shared Library (.so or .dylib) under Linux or macOS
l a static library (.a) under AIX

A DLL1 is a collection of functions typically written in C (or C++) each of which
may take arguments and return a result.

Instructional examples using ⎕NA can be found in the supplied workspace quadna.

The DLL may be part of the standard operating system software, a library purchased
from a third party supplier, or one that you have written yourself.

The right argument Y is a character vector that identifies the name and syntax of the
function to be associated. The left argument X is a character vector that contains the
name to be associated with the external function. If the ⎕NA is successful, a function
(name class 3) is established in the active workspace with name X. If X is omitted, the
name of the external function itself is used for the association.

The shy result R is a character vector containing the name of the external function
that was fixed.

For example, math.dllmight be a library of mathematical functions containing a
function divide. To associate the APL name div with this external function:

'div' ⎕NA 'F8 math|divide I4 I4'

where F8 and I4, specify the types of the result and arguments expected by divide.
The association has the effect of establishing a new function: div in the workspace,
which when called, passes its arguments to divide and returns the result.

)fns
div

div 10 4
2.5

1The term DLL is used herein as a generic name for one of these libraries.

Chapter 4: System Functions 412

Type Declaration
In a compiled language such as C, the types of arguments and results of functions
must be declared explicitly. Typically, these types will be published with the
documentation that accompanies the DLL. For example, function dividemight be
declared:

double divide(int32_t, int32_t);

which means that it expects two long (4-byte) integer arguments and returns a double
(8-byte) floating point result. Notice the correspondence between the C declaration
and the right argument of ⎕NA:

C: double divide (int32_t, int32_t);

APL:'div' ⎕NA 'F8 math|divide I4 I4 '

It is imperative that care be taken when coding type declarations. A DLL cannot
check types of data passed fromAPL. A wrong type declaration will lead to
erroneous results or may even cause the workspace to become corrupted and crash.
During development, you may wish to prevent this happening. See: Installation &
Configuration Guide: ErrorOnExternalException parameter.

The full syntax for the right argument of ⎕NA is:

[result] library|function [arg1] [arg2] ...

Note that functions associated with DLLs are never dyadic. All arguments are passed
as items of a (possibly nested) vector on the right of the function.

Locating the DLL
The DLL may be specified using a full pathname, file extension, and function type.

Be aware
A 32-bit interpreter can only load 32-bit DLLs/shared libraries; a 64-bit interpreter
can only load 64-bit DLLs/shared libraries.

If a DLL/shared library has a missing dependency, the error generated by the
operating system, and therefore reported by Dyalog will suggest that the DLL/shared
library that was explicitly called in the ⎕NA call is missing.

Chapter 4: System Functions 413

Pathname:
APL uses the LoadLibrary() system function underWindows or dlopen()
under UNIX, Linux and macOS to load the DLL. If a full or relative pathname is
omitted, these functions search a list of directories determined by the operating
system. This list always includes the directory which contains the Dyalog program,
and on all non-Windows platforms, $DYALOG/lib. For further details, see the
operating system documentation about these functions.

Alternatively, a full or relative pathname may be supplied in the usual way:

⎕NA'... c:\mydir\mydll|foo ...'

Errors:
If the specified DLL (or a dependent DLL) fails to load it will generate:

FILE ERROR 2 No such file or directory

It is frequently the case that this error is a result of a missing dependency; operating
systems do not return error codes which allow the interpreter to generate a more
specific error.

If the DLL loads successfully, but the specified library function is not accessible, it
will generate:

VALUE ERROR

File Extension:
UnderWindows, if the file extension is omitted, .dll is assumed. Note that some
DLLs are in fact .exe files, and in this case the extension must be specified explicitly:

⎕NA'... mydll.exe|foo ...'

Name Mangling
C++ and some other languages will by default mangle (or decorate) function names
which are exported from a DLL file. The given external function name must exactly
match the exported name, either by matching the name mangling or by ensuring the
names exported from the library are not mangled.

Call by Ordinal Number
UnderWindows, a DLL may associate an ordinal numberwith any of its functions.
This number may then be used to call the function as an alternative to calling it by
name. Using ⎕NA to call by ordinal number uses the same syntax but with the
function name replaced with its ordinal number. For example:

⎕NA'... mydll|57 ...'

Chapter 4: System Functions 414

libc.a on Non-Windows Platforms
On non-Windows platforms many of the most useful system library functions appear
in libc.a. The quadna workspace includes the function NonWindows.Setup
which has code which will locate libc.a on each platform.

Multi-Threading
Appending the '&' character to the function name causes the external function to be
run in its own system thread. For example:

⎕NA'... mydll|foo& ...'

This means that other APL threads can run concurrently with the one that is calling
the ⎕NA function.

Data Type Coding Scheme
The type coding scheme introduced above is of the form:

[direction] [special] type [width] [array][[count]]

The options are summarised in the following table and their functions detailed
below.

Chapter 4: System Functions 415

Description Symbol Meaning

Direction

< Pointer to array input to DLL function.

> Pointer to array output from DLL function

= Pointer to input/output array.

Special
0 Null-terminated string.

Byte-counted string

Type

I int

U unsigned int

C char

T char1

F float

D decimal

J complex

P uintptr-t2

A APL array

Z APL array with header (as passed to a TCP/IP socket)

Width

1 1-byte

2 2-byte

4 4-byte

8 8-byte

16 16-byte (128-bit)

Array
[n] Array of length n elements

[] Array, length determined at call-time

Structure {...} Structure.

Count [int]
Rather than explicitly declaring multiple adjacent
occurrences of the same the count option may be used

1Classic Edition: - translated to/from ANSI
2equivalent to U4 on 32-bit versions and U8 on 64-bit versions

Chapter 4: System Functions 416

In the Classic Edition, C specifies untranslated character, whereas T specifies that the
character data will be translated to/from ⎕AV.

In the Unicode Edition, C and T are identical (no translation of character data is
performed) except that for C the default width is 1 and for T the default width is
"wide" (2 bytes underWindows, 4 bytes under UNIX, Linux or macOS).

The use of T with default width is recommended to ensure portability between
Editions.

Direction
C functions accept data arguments either by value or by address. This distinction is
indicated by the presence of a '*' or '[]' in the argument declaration:

int num1; // value of num1 passed.
int *num2; // Address of num2 passed.
int num3[]; // Address of num3 passed.

An argument (or result) of an external function of type pointer, must be matched in
the ⎕NA call by a declaration starting with one of the characters: <, >, or =.

In C, when an address is passed, the corresponding value can be used as either an
input or an output variable. An output variable means that the C function overwrites
values at the supplied address. Because APL is a call-by-value language, and doesn't
have pointer types, we accommodate this mechanism by distinguishing output
variables, and having them returned explicitly as part of the result of the call.

This means that where the C function indicates a pointer type, we must code this as
starting with one of the characters: <, > or =.

<
indicates that the address of the argument will be used by C as an input
variable and values at the address will not be over-written.

>

indicates that C will use the address as an output variable. In this case,
APL must allocate an output array over which C can write values. After
the call, this array will be included in the nested result of the call to the
external function.

=

indicates that C will use the address for both input and output. In this
case, APL duplicates the argument array into an output buffer whose
address is passed to the external function. As in the case of an output
only array, the newly modified copy will be included in the nested
result of the call to the external function.

Chapter 4: System Functions 417

Examples
<I2 Pointer to 2-byte integer - input to external function
>C Pointer to character output from external function.
=T Pointer to character input to and output from function.
=A Pointer to APL array modified by function.

Special
In C it is common to represent character strings as null-terminated or byte counted
arrays. These special data types are indicated by inserting the symbol 0 (null-
terminated) or # (byte counted) between the direction indicator (<, >, =) and the type
(T or C) specification. For example, a pointer to a null-terminated input character
string is coded as <0T[], and an output one coded as >0T[].

Note that while appending the array specifier '[]' is formally correct, because the
presence of the special qualifier (0 or #) implies an array, the '[]' may be omitted:
<0T, >0T, =#C, etc.

Note also that the 0 and # specifiers may be used with data of all types (excluding A
and Z) and widths. For example, in the Classic Edition, <0U2may be useful for
dealing with Unicode.

Chapter 4: System Functions 418

Type
The data type of the argument may be one of the following characters and may be
specified in lower or upper case:

Code Type Description

I Integer The value is interpreted as a 2s complement signed integer

U
Unsigned
integer The value is interpreted as an unsigned integer

C Character

The value is interpreted as a character. In the Unicode
Edition, the value maps directly onto a Unicode code
point. In the Classic Edition, the value is interpreted as an
index into ⎕AV. This means that ⎕AV positions map onto
corresponding ANSI positions.
For example, with ⎕IO=0:
⎕AV[35] = 's', maps to ANSI[35] = '

T
Translated
character

The value is interpreted as a character. In the Unicode
Edition, the value maps directly onto a Unicode code
point. In the Classic Edition, the value is translated using
standard Dyalog ⎕AV to ANSI translation. This means that
⎕AV characters map onto corresponding ANSI characters.
For example, with ⎕IO=0:
⎕AV[35] = 's' maps to ANSI[115] = 's'

UTF
Unicode
encoded

>0UTF8[] will translate to a UTF-8 encoded string
<0UTF16[] will translate from a UTF-16LE encoded
string

F Float The value is interpreted as an IEEE 754-2008 binary64
floating point number

D Decimal
The value is interpreted as an IEEE 754-2008 decimal128
floating point number (DPD format on AIX, BID format
on other platforms)

J Complex

P uintptr-t This is equivalent to U4 on 32-bit versions and U8 on 64-
bit versions

∇
Function
pointer

This allows the passing of an APL function for the
function to call

Chapter 4: System Functions 419

Code Type Description

A APL array This is the same format as is used to transmit APL arrays
to an Auxiliary Processor (AP)

Z
APL array
with
header

This is the same format as is used to transmit APL arrays
over TCP/IP Sockets

Width
The type specifier may be followed by the width of the value in bytes. For example:

I4 4-byte signed integer.
U2 2-byte unsigned integer.
F8 8-byte floating point number.
F4 4-byte floating point number.
D16 16-byte decimal floating-point number

Type Possible values for Width Default value for Width

I 1, 2, 4, 8 4

U 1, 2, 4, 8 4

C 1,2,4 1

T 1,2,4 wide character(see below)

UTF 8,16 none

F 4, 8 8

D 16 16

J 16 16

P Not applicable

∇ Not applicable

A Not applicable

Z Not applicable

In the Unicode Edition, the default width is the width of a wide character according
to the convention of the host operating system. This translates to T2 underWindows
and T4 under UNIX, Linux or macOS.

Note that 32-bit versions can support 64-bit integer arguments, but not 64-bit integer
results.

Chapter 4: System Functions 420

Examples
I2 16-bit integer
<I4 Pointer to input 4-byte integer
U Default width unsigned integer
=F4 Pointer to input/output 4-byte floating point number.

Arrays
Arrays are specified by following the basic data type with [n] or [], where n
indicates the number of elements in the array. In the C declaration, the number of
elements in an array may be specified explicitly at compile time, or determined
dynamically at runtime. In the latter case, the size of the array is often passed along
with the array, in a separate argument. In this case, n, the number of elements is
omitted from the specification. Note that C deals only in scalars and rank 1 (vector)
arrays.

int vec[10]; // explicit vector length.
unsigned size, list[]; // undetermined length.

could be coded as:

I[10] vector of 10 ints.
U U[] unsigned integer followed by an array of unsigned integers.

Confusion sometimes arises over a difference in the declaration syntax between C
and ⎕NA. In C, an argument declaration may be given to receive a pointer to either a
single scalar item, or to the first element of an array. This is because in C, the address
of an array is deemed to be the address of its first element.

void foo (char *string);
char ch = 'a', ptr = "abc";
foo(&ch);// call with address of scalar.
foo(ptr);// call with address of array.

However, from APL's point of view, these two cases are distinct and if the function is
to be called with the address of (pointer to) a scalar, it must be declared: '<T'.
Otherwise, to be called with the address of an array, it must be declared: '<T[]'.
Note that it is perfectly acceptable in such circumstances to define more than one
name association to the same DLL function specifying different argument types:

'FooScalar'⎕NA'mydll|foo <T' ⋄ FooScalar'a'
'FooVector'⎕NA'mydll|foo <T[]' ⋄ FooVector'abc'

Chapter 4: System Functions 421

Structures
Arbitrary data structures, which are akin to nested arrays, are specified using the
symbols {}. For example, the code {F8 I2} indicates a structure comprised of an 8-
byte float followed by a 2-byte int. Furthermore, the code <{F8 I2}[3]means an
input pointer to an array of 3 such structures.

For example, this structure might be defined in C thus:

typedef struct
{

double f;
short i;

} mystruct;

A function defined to receive a count followed by an input pointer to an array of
such structures:

void foo(unsigned count, mystruct *str);

An appropriate ⎕NA declaration would be:

⎕NA'mydll.foo U <{F8 I2}[]'

A call on the function with two arguments - a count followed by a vector of
structures:

foo 4,⊂(1.4 3)(5.9 1)(6.5 2)(0 0)

Notice that for the above call, APL converts the two Boolean (0 0) elements to an
8-byte float and a 2-byte int, respectively.

Note that if the C compiler would add extra space for alignment within a structure
the ⎕NA syntax will need to code that explicitly. For example:

typedef struct
{

short i;
/* most C compilers would add 6 bytes of alignment here */

double d;
} mystruct;

An appropriate ⎕NA declaration would be:

⎕NA'mydll.foo U <{I2 {I1[6]} F8}[]'

A call on the function with two arguments - a count followed by a vector of
structures:

pad←⊂6⍴0
foo 4,⊂(3 pad 1.4)(1 pad 5.9)(2 pad 6.5)(0 pad 0)

A library designer tries to avoid defining structures that induce padding.

Chapter 4: System Functions 422

Count
If a definition includes multiple adjacent occurrences of the same item, the count
syntax may be used rather than explicitly repeating the same definition.

For example:

>I8[3] rather than >I8 >I8 >I8

{I8 U8 I8 P}[2] rather than {I8 U8 I8 P} {I8 U8 I8 P}

Specifying Pointers Explicitly
⎕NA syntax enables APL to pass arguments to DLL functions by value or address as
appropriate. For example if a function requires an integer followed by a pointer to an
integer:

void fun(int valu, int *addr);

You might declare and call it:

⎕NA'mydll|fun I <I' ⋄ fun 42 42

The interpreter passes the value of the first argument and the address of the second
one.

Two common cases occur where it is necessary to pass a pointer explicitly. The first
is if the DLL function requires a null pointer, and the second is where you want to
pass on a pointer which itself is a result from a DLL function.

In both cases, the pointer argument should be coded as P. This causes APL to pass the
pointer unchanged, by value, to the DLL function.

In the previous example, to pass a null pointer, (or one returned from another DLL
function), you must code a separate ⎕NA definition.

'fun_null'⎕NA'mydll|fun I P' ⋄ fun_null 42 0

Now APL passes the value of the second argument (in this case 0 - the null pointer),
rather than its address.

Note that by using P, which is 4-byte for 32-bit processes and 8-byte for 64-bit
processes, you will ensure that the code will run unchanged under both 32-bit and
64-bit versions of Dyalog APL.

Chapter 4: System Functions 423

Using a Function
A DLL function may or may not return a result, and may take zero or more arguments.
This syntax is reflected in the coding of the right argument of ⎕NA. However, notice
that the corresponding associated APL function is a result-returning niladic (if it
takes no arguments) or monadic function. It cannot be dyadic and it must always
return a vector result - a null one if there is no output from the DLL function. See
Result Vector section below. Examples of the various combinations are:

DLL function Non-result-returning:
⎕NA 'mydll|fn1' ⍝ Niladic
⎕NA 'mydll|fn2 <0T' ⍝ Monadic - 1-element arg
⎕NA 'mydll|fn3 =0T <0T' ⍝ Monadic - 2-element arg

DLL function Result-returning:
⎕NA 'I4 mydll|fn4' ⍝ Niladic
⎕NA 'I4 mydll|fn5 F8' ⍝ Monadic - 1-element arg
⎕NA 'I4 mydll|fn6 >I4[] <0T'⍝ Monadic - 2-element arg

When the external function is called, the number of elements in the argument must
match the number defined in the ⎕NA definition. Using the examples above:

fn1 ⍝ Niladic Function.
fn2, ⊂'Single String' ⍝ 1-element arg
fn3 'This' 'That' ⍝ 2-element arg

Note in the second example, that you must enclose the argument string to produce a
single item (nested) array in order to match the declaration. Dyalog converts the type
of a numeric argument if necessary, so for example in fn5 defined above, a Boolean
value would be converted to double floating point (F8) prior to being passed to the
DLL function.

Pointer Arguments
When passing pointer arguments there are three cases to consider.

< Input pointer:
In this case you must supply the data array itself as argument to the function. A
pointer to its first element is then passed to the DLL function.

fn2 ⊂'hello'

Chapter 4: System Functions 424

> Output pointer:
Here, you must supply the number of elements that the output will need in order for
APL to allocate memory to accommodate the resulting array.

fn6 10 'world' ⍝ 1st arg needs space for 10 ints.

Note that if you were to reserve fewer elements than the DLL function actually used,
the DLL function would write beyond the end of the reserved array and may cause
the interpreter to crash with a System Error (syserror 999 on Windows or SIGSEGV
on UNIX, Linux orMac OS).

= Input/Output:
As with the input-only case, a pointer to the first element of the argument is passed to
the DLL function. The DLL function then overwrites some or all of the elements of
the array, and the new value is passed back as part of the result of the call. As with
the output pointer case, if the input array were too short, so that the DLL wrote
beyond the end of the array, the interpreter would almost certainly crash.

fn3 '.....' 'hello'

Result Vector
In APL, a function cannot overwrite its arguments. This means that any output from a
DLL function must be returned as part of the explicit result, and this includes output
via 'output' or 'input/output' pointer arguments.

The general form of the result from calling a DLL function is a nested vector. The first
item of the result is the defined explicit result of the external function, and
subsequent items are implicit results from output, or input/output pointer arguments.

The length of the result vector is therefore: 1 (if the function was declared to return an
explicit result) + the number of output or input/output arguments.

⎕NA Declaration Result Output Arguments Result Length

mydll|fn1 0 0

mydll|fn2 <0T 0 0 0

mydll|fn3 =0T <0T 0 1 0 1

I4 mydll|fn4 1 1

I4 mydll|fn5 F8 1 0 1

I4 mydll|fn6 >I4[] <0T 1 1 0 2

Note that the result vector from a function that is declared void() and has no
output parameters is ⍬ (zilde).

Chapter 4: System Functions 425

As a convenience, if the result would otherwise be a 1-item vector, it is disclosed.
Using the third example above:

⍴fn3 '.....' 'abc'
5

fn3 has no explicit result; its first argument is input/output pointer; and its second
argument is input pointer. Therefore as the length of the result would be 1, it has been
disclosed.

64 bit integer results
When a 64 bit integer result is returned it is converted into 128 bit decimal floating
point, because this is the only APL data type that can fully preserve all 64 bits of the
result. If you wish to perform arithmetic with this value, you must set ⎕FR to 1287 in
order to preserve the same precision. If this is not done then the precision will be 53
bits which might not be enough.

Callbacks (∇)
Currently, support for a ⎕NA function to call an APL function is limited to the use of
the NAG (National Algorithms Group) library of functions. This library is a
FORTRAN library and FORTRAN passes arguments by reference (address) rather
than by value. The expression:

∇f8←(P P P P)

declares a callback function that returns a double and takes 4 pointer arguments. The
result can be any of the normal results. It is not possible to return a pointer. The
arguments can be from 0 to 16 P values.

The argument when passed can be the name of an APL function or the ⎕OR of a
function.

The function when called can then decode the pointer arguments appropriately using
a ⎕NA of MEMCPY().

ANSI /Unicode Versions of Library Calls
UnderWindows, most library functions that take character arguments, or return
character results have two forms: one Unicode (Wide) and one ANSI. For example, a
function such as MessageBox(), has two forms MessageBoxA() and
MessageBoxW(). The A stands for ANSI (1-byte) characters, and the W for wide (2-
byte Unicode) characters.

It is essential that you associate the form of the library function that is appropriate for
the Dyalog Edition you are using, i.e. MessageBoxA() for the Classic Edition, but
MessageBoxW() for the Unicode Edition.

Chapter 4: System Functions 426

Whilst this is convenient it is not complete. It is adequate for character arrays that
consist of characters from UCS-2 (i.e. those that will fit in an array with a ⎕DR of 80
or 160). If a more complete support is required then the W form of the function would
be required and explicit use of UTF16 specified.

To simplify writing portable code for both Editions, you may specify the character *
instead of A or W at the end of a function name. This will be replaced by A in the
Classic Edition and W in the Unicode Edition.

The default name of the associated function (if no left argument is given to ⎕NA), will
be without the trailing letter (MessageBox).

Type Definitions (typedefs)
The C language encourages the assignment of defined names to primitive and
complex data types using its #define and typedefmechanisms. Using such
abstractions enables the C programmer to write code that will be portable across
many operating systems and hardware platforms.

Windows software uses many such names and Microsoft documentation will
normally refer to the type of function arguments using defined names such as
HANDLE or LPSTR rather than their equivalent C primitive types: int or char*.

It is beyond the scope of this manual to list all the Microsoft definitions and their C
primitive equivalents, and indeed, DLLs from sources other than Microsoft may well
employ their own distinct naming conventions.

In general, you should consult the documentation that accompanies the DLL in order
to convert typedefs to primitive C types and thence to ⎕NA declarations. The
documentation may well refer you to the 'include' files which are part of the Software
Development Kit, and in which the types are defined.

The following table of some commonly encountered Windows typedefs and their
⎕NA equivalents might prove useful.

Windows typedef ⎕NA equivalent

HWND P

HANDLE P

GLOBALHANDLE P

LOCALHANDLE P

DWORD U4

WORD U2

BYTE U1

Chapter 4: System Functions 427

Windows typedef ⎕NA equivalent

LPSTR =0T[] (note 1)

LPCSTR <0T[] (note 2)

WPARAM U (note 3)

LPARAM U4 (note 3)

LRESULT I4

BOOL I

UINT U

ULONG U4

ATOM U2

HDC P

HBITMAP P

HBRUSH P

HFONT P

HICON P

HMENU P

HPALETTE P

HMETAFILE P

HMODULE P

HINSTANCE P

COLORREF {U1[4]}

POINT {I I}

POINTS {I2 I2}

RECT {I I I I}

CHAR T or C

Chapter 4: System Functions 428

Notes
1. LPSTR is a pointer to a null-terminated string. The definition does not

indicate whether this is input or output, so the safest coding would be =0T
[] (providing the vector you supply for input is long enough to
accommodate the result). You may be able to improve simplicity or
performance if the documentation indicates that the pointer is 'input only'
(<0T[]) or 'output only' (>0T[]). See Direction above.

2. LPCSTR is a pointer to a constant null-terminated string and therefore
coding <0T[] is safe.

3. WPARAM is an unsigned value, LPARAM is signed. They are 32 bit values in
a 32-bit APL, and 64-bit in a 64 bit APL. You should consult the
documentation for the specific function that you intend to call to determine
what type they represent

4. The use of type T with default width ensures portability of code between
Classic and Unicode Editions. In the Classic Edition, T (with no width
specifier) implies 1-byte characters which are translated between ⎕AV and
ASCII, while in the Unicode Edition, T (with no width specifier) implies 2-
byte (Unicode) characters.

The Dyalog DLL
The Dyalog DLL (see Installation & Configuration Guide: Run-Time Applications
and Components) contains three functions: MEMCPY, STRNCPY and STRLEN.

MEMCPY
MEMCPY is an extremely versatile function used for moving arbitrary data between
memory buffers.

Its C definition is:

void *MEMCPY(// copy memory
void *to, // target address
void *fm, // source address
size_t size // number of bytes to copy
);

MEMCPY copies size bytes starting from source address fm, to destination address
to. The source and destination areas should not overlap; if they do the behaviour is
undefined and the result is the first argument.

MEMCPY's versatility stems from being able to associate to it using many different
type declarations.

Chapter 4: System Functions 429

Example
Suppose a global buffer (at address: addr) contains (numb) double floating point
numbers. To copy these to an APL array, we could define the association:

'doubles' ⎕NA 'dyalog32|MEMCPY >F8[] I4 U4'
doubles numb addr (numb×8)

Notice that:

l As the first argument to doubles is an output argument, we must supply
the number of elements to reserve for the output data.

l MEMCPY is defined to take the number of bytes to copy, so we must
multiply the number of elements by the element size in bytes.

Example
Suppose that a database application requires that we construct a record in global
memory prior to writing it to file. The record structure might look like this:

typedef struct {
int empno;// employee number.
float salary;// salary.
char name[20];// name.
} person;

Then, having previously allocated memory (addr) to receive the record, we can
define:

'prec' ⎕NA 'dyalog64|MEMCPY P <{P F4 T[20]} P'
prec addr(99 12345.60 'Charlie Brown')(4+4+20)

STRNCPY
STRNCPY is used to copy null-terminated strings between memory buffers.

Its C definition is:

void *STRNCPY(// copy null-terminated string
char *to,// target address
char *fm,// source address
size_t size// MAX number of chars to copy
);

STRNCPY copies a maximum of size characters from the null-terminated source
string at address fm, to the destination address to. If the source and destination
strings overlap, the result is the first argument.

If the source string is shorter than size, a null character is appended to the
destination string.

If the source string (including its terminating null) is longer than size, only size
characters are copied and the resulting destination string is not null-terminated

Chapter 4: System Functions 430

Example
Suppose that a database application returns a pointer (addr) to a structure that
contains two pointers to (max 20-char) null-terminated strings.

typedef struct { // null-terminated strings:
char *first; // first name (max 19 chars + 1 null).
char *last; // last name. (max 19 chars + 1 null).
} name;

To copy the names from the structure:

'get'⎕NA'dyalog64|STRNCPY >0T[] P U4'
get 20 addr 20

Charlie
get 20 (addr+4) 20

Brown

Note that (as this is a 64-bit example), ⎕FRmust be 1287 for the addition to be
reliable.

To copy data from the workspace into an already allocated (new) structure:

'put'⎕NA'dyalog32|STRNCPY I4 <0T[] U4'
put new 'Bo' 20
put (new+4) 'Peep' 20

Notice in this example that you must ensure that names no longer than 19 characters
are passed to put. More than 19 characters would not leave STRNCPY enough
space to include the trailing null, which would probably cause the application to fail.

STRNCPYA
This is a synonym for STRNCPY. It is there so that STRNCPY* (on Windows)
selects between STRNCPYA and STRNCPYW.

STRNCPYW
This is a cover for the C standard function wcsncpy(). It is named this way so that
(on Windows) STRNCPY* will behave helpfully.

STRLEN
STRLEN calculates the length of a C string (a 0-terminated string of bytes in
memory). Its C declaration is:

size_t STRLEN(// calculate length of string
const char *s // address of string
);

Chapter 4: System Functions 431

Example
Suppose that a database application returns a pointer (addr) to a null-terminated
string and you do not know the upper bound on the length of the string.

To copy the string into the workspace:

'len'⎕NA'P dyalog32|STRLEN P'
'cpy'⎕NA'dyalog32|MEMCPY >T[] P P'
cpy l addr (l←len addr)

Bartholemew

Examples
The following examples all use functions from the Microsoft Windows
user32.dll.

This DLL should be located in a standard Windows directory, so you should not
normally need to give the full path name of the library. However if trying these
examples results in the error message FILE ERROR 1 No such file or
directory, you must locate the DLL and supply the full path name (and possibly
extension).

Example 1
The Windows function GetCaretBlinkTime retrieves the caret blink rate. It
takes no arguments and returns an unsigned int and is declared as follows:

UINT GetCaretBlinkTime(void);

The following statements would provide access to this routine through an APL
function of the same name.

⎕NA 'U user32|GetCaretBlinkTime'
GetCaretBlinkTime

530

The following statement would achieve the same thing, but using an APL function
called BLINK.

'BLINK' ⎕NA 'U user32|GetCaretBlinkTime'
BLINK

530

Chapter 4: System Functions 432

Example 2
The Windows function SetCaretBlinkTime sets the caret blink rate. It takes a
single unsigned int argument, does not return a result and is declared as follows:

void SetCaretBlinkTime(UINT);

The following statements would provide access to this routine through an APL
function of the same name:

⎕NA 'user32|SetCaretBlinkTime U'
SetCaretBlinkTime 1000

Example 3
The Windows function MessageBox displays a standard dialog box on the screen
and awaits a response from the user. It takes 4 arguments. The first is the window
handle for the window that owns the message box. This is declared as an unsigned
int. The second and third arguments are both pointers to null-terminated strings
containing the message to be displayed in the Message Box and the caption to be
used in the window title bar. The 4th argument is an unsigned int that specifies the
Message Box type. The result is an int which indicates which of the buttons in the
message box the user has pressed. The function is declared as follows:

int MessageBox(HWND, LPCSTR, LPCSTR, UINT);

The following statements provide access to this routine through an APL function of
the same name. Note that the 2nd and 3rd arguments are both coded as input pointers
to type T null-terminated character arrays which ensures portability between
Editions.

⎕NA 'I user32|MessageBox* P <0T <0T U'

The following statement displays a Message Box with a stop sign icon together with
2 push buttons labelled OK and Cancel (this is specified by the value 19).

MessageBox 0 'Message' 'Title' 19

The function works equally well in the Unicode Edition because the <0T
specification is portable.

MessageBox 0 'Το Μήνυμα' 'Ο Τίτλος' 19

Note that a simpler, portable (and safer) method for displaying a Message Box is to
use Dyalog APL's primitive MsgBox object.

Chapter 4: System Functions 433

Example 4
The Windows function FindWindow obtains the window handle of a window
which has a given character string in its title bar. The function takes two arguments.
The first is a pointer to a null-terminated character string that specifies the window's
class name. However, if you are not interested in the class name, this argument
should be a NULL pointer. The second is a pointer to a character string that specifies
the title that identifies the window in question. This is an example of a case
described above where two instances of the function must be defined to cater for the
two different types of argument. However, in practice this function is most often
used without specifying the class name. The function is declared as follows:

HWND FindWindow(LPCSTR, LPCSTR);

The following statement associates the APL function FW with the second variant of
the FindWindow call, where the class name is specified as a NULL pointer. To
indicate that APL is to pass the value of the NULL pointer, rather than its address, we
need to code this argument as I4.

'FW' ⎕NA 'P user32|FindWindow* P <0T'

To obtain the handle of the window entitled "CLEARWS - Dyalog APL/W":

⎕←HNDL←FW 0 'CLEAR WS - Dyalog APL/W'
59245156

Example 5
The Windows function GetWindowText retrieves the caption displayed in a
window's title bar. It takes 3 arguments. The first is an unsigned int containing the
window handle. The second is a pointer to a buffer to receive the caption as a null-
terminated character string. This is an example of an output array. The third
argument is an int which specifies the maximum number of characters to be copied
into the output buffer. The function returns an int containing the actual number of
characters copied into the buffer and is declared as follows:

int GetWindowText(HWND, LPSTR, int);

The following associates the "GetWindowText" DLL function with an APL
function of the same name. Note that the second argument is coded as ">0T"
indicating that it is a pointer to a character output array.

⎕NA 'I user32|GetWindowText* P >0T I'

Now change the Session caption using)WSID :

)WSID MYWS
was CLEAR WS

Chapter 4: System Functions 434

Then retrieve the new caption (max length 255) using window handle HNDL from the
previous example:

]display GetWindowText HNDL 255 255
.→-------------------------.
| .→------------------. |
| 19 |MYWS - Dyalog APL/W| |
| '-------------------' |
'∊-------------------------'

There are three points to note.

1. Firstly, the number 255 is supplied as the second argument. This instructs
APL to allocate a buffer large enough for a 255-element character vector
into which the DLL routine will write.

2. Secondly, the result of the APL function is a nested vector of 2 elements.
The first element is the result of the DLL function. The second element is
the output character array.

3. Finally, notice that although we reserved space for 255 elements, the result
reflects the length of the actual text (19).

An alternative way of coding and using this function is to treat the second argument
as an input/output array.

e.g.

⎕NA 'I User32|GetWindowText* P =0T I'

]display GetWindowText HNDL (255⍴' ') 255
.→-------------------------.
| .→------------------. |
| 19 |MYWS - Dyalog APL/W| |
| '-------------------' |
'∊-------------------------'

In this case, the second argument is coded as =0T, so when the function is called an
array of the appropriate size must be supplied. This method uses more space in the
workspace, although for small arrays (as in this case) the real impact of doing so is
negligible.

Example 6
The function GetCharWidth returns the width of each character in a given range.
Its first argument is a device context (handle). Its second and third arguments specify
font positions (start and end). The third argument is the resulting integer vector that
contains the character widths (this is an example of an output array). The function
returns a Boolean value to indicate success or failure. The function is defined as
follows. Note that this function is provided in the library: gdi32.dll.

Chapter 4: System Functions 435

BOOL GetCharWidth(HDC, UINT, UINT, LPINT);

The following statements provide access to this routine through an APL function of
the same name:

⎕NA 'U4 gdi32|GetCharWidth* P U U >I[]'

'Prin'⎕WC'Printer'

]display GetCharWidth ('Prin' ⎕WG 'Handle') 65 67 3
.→-------------.
| .→-------. |
| 1 |50 50 50| |
| '~-------' |
'∊-------------'

Note: 'Prin'⎕WG'Handle' returns a handle which is represented as a number.
The number will be in the range (0 - 2*32] on a 32-bit version and (0 - 2*64] on a 64-
bit version. These can be passed to a P type parameter. Older versions used a 32-bit
signed integer.

Example 7
The following example from the supplied workspace: quadna.dws. quadna
illustrates several techniques which are important in advanced ⎕NA programming.
Function DllVersion returns the major and minor version number for a given
DLL. Note that this example assumes that the computer is running the 64-bit version
of Dyalog.

In advanced DLL programming, it is often necessary to administer memory outside
APL's workspace. In general, the procedure for such use is:

1. Allocate global memory.
2. Lock the memory.
3. Copy any DLL input information from workspace into memory.
4. Call the DLL function.
5. Copy any DLL output information from memory to workspace.
6. Unlock the memory.
7. Free the memory.

Notice that steps 1 and 7 and steps 2 and 6 complement each other. That is, if you
allocate global systemmemory, you must free it after you have finished using it. If
you continue to use global memory without freeing it, your system will gradually run
out of resources. Similarly, if you lock memory (which you must do before using it),
then you should unlock it before freeing it. Although on some versions ofWindows,
freeing the memory will include unlocking it, in the interests of good style,
maintaining the symmetry is probably a good thing.

Chapter 4: System Functions 436

∇ version←DllVersion file;Alloc;Free;Lock;Unlock;Size
;Info;Value;Copy;size;hndl;addr;buff;ok

[1]
[2] 'Alloc'⎕NA'P kernel32|GlobalAlloc U4 P'
[3] 'Free'⎕NA'P kernel32|GlobalFree P'
[4] 'Lock'⎕NA'P kernel32|GlobalLock P'
[5] 'Unlock'⎕NA'U4 kernel32|GlobalUnlock P'
[6]
[7] 'Size'⎕NA'U4 version|GetFileVersionInfoSize* <0T >U4'
[8] 'Info'⎕NA'U4 version|GetFileVersionInfo*<0T U4 U4 P'
[9] 'Value'⎕NA'U4 version|VerQueryValue* P <0T >P >U4'
[10]
[11] 'Copy'⎕NA'dyalog64|MEMCPY >U4[] P P'
[12]
[13] :If ×size←⊃Size file 0 ⍝ Size of info
[14] :AndIf ×hndl←Alloc 0 size ⍝ Alloc memory
[15] :If ×addr←Lock hndl ⍝ Lock memory
[16] :If ×Info file 0 size addr ⍝ Version info
[17] ok buff size←Value addr'\' 0 0 ⍝ Version value
[18] :If ok
[19] buff←Copy(size÷4)buff size ⍝ Copy info
[20] version←(2/2*16)⊤⊃2↓buff ⍝ Split version
[21] :EndIf
[22] :EndIf
[23] ok←Unlock hndl ⍝ Unlock memory
[24] :EndIf
[25] ok←Free hndl ⍝ Free memory
[26] :EndIf

∇

Lines [2-11] associate APL function names with the DLL functions that will be used.

Lines [2-5] associate functions to administer global memory.

Lines [7-9] associate functions to extract version information from a DLL.

Line[11] associates Copy with MEMCPY function from dyalog64.dll.

Lines [13-26] call the DLL functions.

Line [13] requests the size of buffer required to receive version information for the
DLL. A size of 0 will be returned if the DLL does not contain version information.

Notice that care is taken to balance memory allocation and release:

On line [14], the :If clause is taken only if the global memory allocation is successful,
in which case (and only then) a corresponding Free is called on line [25].

Unlock on line[23] is called if and only if the call to Lock on line [15] succeeds.

A result is returned from the function only if all the calls are successful Otherwise, the
calling environment will sustain a VALUE ERROR.

Chapter 4: System Functions 437

More Examples
⎕NA'I4 advapi32 |RegCloseKey P'
⎕NA'I4 advapi32 |RegCreateKeyEx* P <0T U4 <0T U4 U4 P >P >U4'
⎕NA'I4 advapi32 |RegEnumValue* P U4 >0T =U4 =U4 >U4 >0T
=U4'
⎕NA'I4 advapi32 |RegOpenKey* P <0T >P'
⎕NA'I4 advapi32 |RegOpenKeyEx* P <0T U4 U4 >P'
⎕NA'I4 advapi32 |RegQueryValueEx* P <0T =U4 >U4 >0T =U4'
⎕NA'I4 advapi32 |RegSetValueEx* P <0T =U4 U4 <0T U4'
⎕NA'P dyalog32 |STRNCPY P P P'
⎕NA'P dyalog32 |STRNCPYA P P P'
⎕NA'P dyalog32 |STRNCPYW P P P'
⎕NA'P dyalog32 |MEMCPY P P P'
⎕NA'I4 gdi32 |AddFontResource* <0T'
⎕NA'I4 gdi32 |BitBlt P I4 I4 I4 I4 P I4 I4 U4'
⎕NA'U4 gdi32 |GetPixel P I4 I4'
⎕NA'P gdi32 |GetStockObject I4'
⎕NA'I4 gdi32 |RemoveFontResource* <0T'
⎕NA'U4 gdi32 |SetPixel P I4 I4 U4'
⎕NA' glu32 |gluPerspective F8 F8 F8 F8'
⎕NA'I4 kernel32 |CopyFile* <0T <0T I4'
⎕NA'P kernel32 |GetEnvironmentStrings'
⎕NA'U4 kernel32 |GetLastError'
⎕NA'U4 kernel32 |GetTempPath* U4 >0T'
⎕NA'P kernel32 |GetProcessHeap'
⎕NA'I4 kernel32 |GlobalMemoryStatusEx ={U4 U4 U8 U8 U8 U8 U8 U8}'
⎕NA'P kernel32 |HeapAlloc P U4 P'
⎕NA'I4 kernel32 |HeapFree P U4 P'
⎕NA' opengl32 |glClearColor F4 F4 F4 F4'
⎕NA' opengl32 |glClearDepth F8'
⎕NA' opengl32 |glEnable U4'
⎕NA' opengl32 |glMatrixMode U4'
⎕NA'I4 user32 |ClientToScreen P ={I4 I4}'
⎕NA'P user32 |FindWindow* <0T <0T'
⎕NA'I4 user32 |ShowWindow P I4'
⎕NA'I2 user32 |GetAsyncKeyState I4'
⎕NA'P user32 |GetDC P'
⎕NA'I4 User32 |GetDialogBaseUnits'
⎕NA'P user32 |GetFocus'
⎕NA'U4 user32 |GetSysColor I4'
⎕NA'I4 user32 |GetSystemMetrics I4'
⎕NA'I4 user32 |InvalidateRgn P P I4'
⎕NA'I4 user32 |MessageBox* P <0T <0T U4'
⎕NA'I4 user32 |ReleaseDC P P'
⎕NA'P user32 |SendMessage* P U4 P P'
⎕NA'P user32 |SetFocus P'
⎕NA'I4 user32 |WinHelp* P <0T U4 P'
⎕NA'I4 winnm |sndPlaySound <0T U4'

Chapter 4: System Functions 438

Native File Append {R}←X ⎕NAPPEND Y

This function appends the ravel of its left argument X to the end of the designated
native file. Xmust be a simple homogeneous APL array. Y is a 1- or 2-element
integer vector. Y[1] is a negative integer that specifies the tie number of a native
file. The optional second element Y[2] specifies the data type to which the array X
is to be converted before it is written to the file.

The shy file index result returned is the position within the file of the end of the
record, which is also the start of the following one.

Unicode Edition
Unless you specify the data type in Y[2], a character array will by default be written
using type 80.

If the data will not fit into the specified character width (bytes) ⎕NAPPEND will fail
with a DOMAIN ERROR.

As a consequence of these two rules, you must specify the data type (either 160 or
320) in order to write Unicode characters whose code-point are in the range 256-
65535 and >65535 respectively.

Example

n←'test'⎕NCREATE 0
'abc' ⎕nappend n

'ταβέρνα'⎕nappend n
DOMAIN ERROR

'ταβέρνα'⎕NAPPEND n
∧

'ταβέρνα'⎕NAPPEND n 160

⎕NREAD n 80 3 0
abc

⎕NREAD n 160 7
ταβέρνα

To write 2 or more lines, you must insert appropriate end-of-line codes.

('hello',(⎕UCS 13 10),'world')⎕nappend ¯1 ⍝ Windows
('hello',(⎕UCS 10),'world')⎕nappend ¯1 ⍝ Other

Chapter 4: System Functions 439

Name Classification R←⎕NC Y

Ymust be a simple character scalar, vector, matrix, or vector of vectors that specifies a
list of names. R is a simple numeric vector containing one element per name in Y.
Each element of R is the name class of the active referent to the object named in Y.

If Y is simple, a name class may be:

Name Class Description

¯1 invalid name

0 unused name

1 Label

2 Variable

3 Function

4 Operator

8 Event

9 Object (GUI, namespace, COM, .NET)

If Y is nested a more precise analysis of name class is obtained whereby different
types are identified by a decimal extension. For example, defined functions have
name class 3.1, dfns have name class 3.2, and so forth. The complete set of name
classification is as follows:

Array
(2)

Function
(3)

Operator
(4) Namespace (9)

n.1 Variable Traditional Traditional Created by ⎕NS,)NS or
:Namespace

n.2 Field dfn dop Instance

n.3 Property Derived or
Primitive

Derived or
Primitive

n.4 Class

n.5 Interface

n.6 External
Shared External External Class

n.7 External Interface

Chapter 4: System Functions 440

In addition, values in R are negative to identify names of methods, properties and
events that are inherited through the class hierarchy of the current class or instance.

Variable (Name-Class 2.1)
Conventional APL arrays have name-class 2.1.

NUM←88
CHAR←'Hello World'

⎕NC ↑'NUM' 'CHAR'
2 2

⎕NC 'NUM' 'CHAR'
2.1 2.1

'MYSPACE'⎕NS ''
MYSPACE.VAR←10
MYSPACE.⎕NC'VAR'

2
MYSPACE.⎕NC⊂'VAR'

2.1

Field (Name-Class 2.2)
Fields defined by APL Classes have name-class 2.2.

:Class nctest
:Field Public pubFld
:Field pvtFld

∇ r←NameClass x
:Access Public
r←⎕NC x

∇
...
:EndClass ⍝ nctest

ncinst←⎕NEW nctest

The name-class of a Field, whether Public or Private, viewed from a Method that is
executing within the Instance Space, is 2.2.

ncinst.NameClass'pubFld' 'pvtFld'
2.2 2.2

Chapter 4: System Functions 441

Note that an internal Method sees both Public and Private Fields in the Class
Instance. However, when viewed from outside the instance, only public fields are
visible

⎕NC 'ncinst.pubFld' 'ncinst.pvtFld'
¯2.2 0

In this case, the name-class is negative to indicate that the name has been exposed by
the class hierarchy, rather than existing in the associated namespace which APL has
created to contain the instance. The same result is returned if ⎕NC is executed inside
this space:

ncinst.⎕NC'pubFld' 'pvtFld'
¯2.2 0

Note that the names of Fields are reported as being unused if the argument to ⎕NC is
simple.

ncinst.⎕NC 2 6⍴'pubFldpvtFld'
0 0

Property (Name-Class 2.3)
Properties defined by APL Classes have name-class 2.3.

:Class nctest
:Field pvtFld←99

:Property pubProp
:Access Public

∇ r←get
r←pvtFld

∇
:EndProperty

:Property pvtProp
∇ r←get

r←pvtFld
∇

:EndProperty

∇ r←NameClass x
:Access Public
r←⎕NC x

∇
...
:EndClass ⍝ nctest

ncinst←⎕NEW nctest

Chapter 4: System Functions 442

The name-class of a Property, whether Public or Private, viewed from a Method that
is executing within the Instance Space, is 2.3.

ncinst.NameClass'pubProp' 'pvtProp'
2.3 2.3

Note that an internal Method sees both Public and Private Properties in the Class
Instance. However, when viewed from outside the instance, only Public Properties
are visible

⎕NC 'ncinst.pubProp' 'ncinst.pvtProp'
¯2.3 0

In this case, the name-class is negative to indicate that the name has been exposed by
the class hierarchy, rather than existing in the associated namespace which APL has
created to contain the instance. The same result is returned if ⎕NC is executed inside
this space:

ncinst.⎕NC 'pubProp' 'pvtProp'
¯2.3 0

Note that the names of Properties are reported as being unused if the argument to ⎕NC
is simple.

ncinst.⎕NC 2 6⍴'pubProppvtProp'
0 0

External Property (Name-Class 2.6)
Properties exposed by external objects (.NET and COM and the APL GUI) have
name-class ¯2.6.

⎕USING←'System'
dt←⎕NEW DateTime (2006 1 1)
dt.⎕NC 'Day' 'Month' 'Year'

¯2.6 ¯2.6 ¯2.6

'ex' ⎕WC 'OLEClient' 'Excel.Application'
ex.⎕NC 'Caption' 'Version' 'Visible'

¯2.6 ¯2.6 ¯2.6

'f'⎕WC'Form'
f.⎕NC'Caption' 'Size'

¯2.6 ¯2.6

Note that the names of such Properties are reported as being unused if the argument
to ⎕NC is simple.

f.⎕NC 2 7⍴'CaptionSize '
0 0

Chapter 4: System Functions 443

Defined Function (Name-Class 3.1)
Traditional APL defined functions have name-class 3.1.

∇ R←AVG X
[1] R←(+/X)÷⍴X

∇
AVG ⍳100

50.5

⎕NC'AVG'
3

⎕NC⊂'AVG'
3.1

'MYSPACE'⎕NS 'AVG'
MYSPACE.AVG ⍳100

50.5

MYSPACE.⎕NC'AVG'
3

⎕NC⊂'MYSPACE.AVG'
3.1

Note that a function that is simply cloned from a defined function by assignment
retains its name-class.

MEAN←AVG
⎕NC'AVG' 'MEAN'

3.1 3.1

Whereas, the name of a function that amalgamates a defined function with any other
functions has the name-class of a Derived Function, i.e. 3.3.

VMEAN←AVG∘,
⎕NC'AVG' 'VMEAN'

3.1 3.3

Dfn (Name-Class 3.2)
Dfns have name-class 3.2

Avg←{(+/⍵)÷⍴⍵}

⎕NC'Avg'
3

⎕NC⊂'Avg'
3.2

Chapter 4: System Functions 444

Derived Function (Name-Class 3.3)
Names that reference a primitive or derived function have a name-class of 3.3.

PLUS←+
SUM←+/
CUM←PLUS\
⎕NC'PLUS' 'SUM' 'CUM'

3.3 3.3 3.3
⎕NC 3 4⍴'PLUSSUM CUM '

3 3 3

Note the difference between the name-class of a name referring to a defined function
(3.1) and that of a name referring to a defined function bound with an operator to
form a derived function (3.3). Trains, being derived functions, also have nameclass
3.3.

∇ R←AVG X
[1] R←(+/X)÷⍴X

∇

MEAN←AVG
VMEAN←AVG∘,

negrec←-,÷

⎕NC'AVG' 'MEAN' 'VMEAN' 'negrec'
3.1 3.1 3.3 3.3

External Function (Name-Class 3.6)
Methods exposed by the Dyalog APL GUI and COM and .NET objects have name-
class ¯3.6. Methods exposed by External Functions created using ⎕NA and ⎕SH all
have name-class 3.6.

'F'⎕WC'Form'

F.⎕NC'GetTextSize' 'GetFocus'
¯3.6 ¯3.6

'EX'⎕WC'OLEClient' 'Excel.Application'
EX.⎕NC 'Wait' 'Save' 'Quit'

¯3.6 ¯3.6 ¯3.6

⎕USING←'System'
dt←⎕NEW DateTime (2006 1 1)
dt.⎕NC 'AddDays' 'AddHours'

¯3.6 ¯3.6

Chapter 4: System Functions 445

'beep'⎕NA'user32|MessageBeep i'

⎕NC'beep'
3

⎕NC⊂'beep'
3.6

'xutils'⎕SH''
)FNS

avx box dbr getenv hex ltom ltov
mtol ss vtol

⎕NC'hex' 'ss'
3.6 3.6

Note that the names of such Methods are reported as being unused if the argument to
⎕NC is simple.

'F'⎕WC'Form'
F.⎕NC↑'GetTextSize' 'GetFocus'

0 0

Operator (Name-Class 4.1)
Traditional Defined Operators have name-class 4.1.

∇FILTER∇
∇ VEC←(P FILTER)VEC ⍝ Select from VEC those elts ..

[1] VEC←(P¨VEC)/VEC ⍝ for which BOOL fn P is true.
∇

⎕NC'FILTER'
4

⎕NC⊂'FILTER'
4.1

Dop (Name-Class 4.2)
Dops have name-class 4.2.

pred←{⎕IO ⎕ML←1 3 ⍝ Partitioned reduction.
⊃⍺⍺/¨(⍺/⍳⍴⍺)⊂⍵
}

2 3 3 2 +pred ⍳10
3 12 21 19

⎕NC'pred'
4

⎕NC⊂'pred'
4.2

Chapter 4: System Functions 446

Derived Operator (Name-Class 4.3)
Derived operators include:

l A name referring to a monadic operator.
l A dyadic operator curried with its right-operand.

Example:
each←¨
each

¨
⎕NC ⊂'each'

4.3

inv←⍣¯1
inv

⍣ ¯1
⎕NC ⊂'inv'

4.3
c2f←(32∘+)∘(×∘1.8) ⍝ Centigrade to Fahrenheit
f2c 0 100

32 212
f2c inv 32 212 ⍝ Fahrenheit to Centigrade

0 100

External Event (Name-Class 8.6)
Events exposed by Dyalog APL GUI objects, COM and .NET objects have name-
class ¯8.6.

f←⎕NEW'Form'('Caption' 'Dyalog GUI Form')
f.⎕NC'Close' 'Configure' 'MouseDown'

¯8.6 ¯8.6 ¯8.6

xl←⎕NEW'OLEClient'(⊂'ClassName'
'Excel.Application')

xl.⎕NL -8
NewWorkbook SheetActivate SheetBeforeDoubleClick ...

xl.⎕NC 'SheetActivate' 'SheetCalculate'
¯8.6 ¯8.6

⎕USING←'System.Windows.Forms,system.windows.forms.dll'
⎕NC,⊂'Form'

9.6
Form.⎕NL -8

Activated BackgroundImageChanged BackColorChanged ...

Chapter 4: System Functions 447

Namespace (Name-Class 9.1)
Plain namespaces created using ⎕NS, or fixed from a :Namespace script, have
name-class 9.1.

'MYSPACE' ⎕NS ''
⎕NC'MYSPACE'

9
⎕NC⊂'MYSPACE'

9.1

Note however that a namespace created by cloning, where the right argument to ⎕NS
is a ⎕OR of a namespace, retains the name-class of the original space.

'CopyMYSPACE'⎕NS ⎕OR 'MYSPACE'
'CopyF'⎕NS ⎕OR 'F'⎕WC'Form'

⎕NC'MYSPACE' 'F'
9.1 9.2

⎕NC'CopyMYSPACE' 'CopyF'
9.1 9.2

The Name-Class of .NET namespaces (visible through ⎕USING) is also 9.1

⎕USING←''
⎕NC 'System' 'System.IO'

9.1 9.1

Instance (Name-Class 9.2)
Instances of Classes created using ⎕NEW, and GUI objects created using ⎕WC all have
name-class 9.2.

MyInst←⎕NEW MyClass
⎕NC'MyInst'

9
⎕NC⊂'MyInst'

9.2
UrInst←⎕NEW ⎕FIX ':Class' ':EndClass'
⎕NC 'MyInst' 'UrInst'

9.2 9.2

'F'⎕WC 'Form'
'F.B' ⎕WC 'Button'
⎕NC 2 3⍴'F F.B'

9 9
⎕NC'F' 'F.B'

9.2 9.2

Chapter 4: System Functions 448

F.⎕NC'B'
9

F.⎕NC⊂,'B'
9.2

Instances of COM Objects whether created using ⎕WC or ⎕NEW also have name-class
9.2.

xl←⎕NEW'OLEClient'(⊂'ClassName'
'Excel.Application')

'XL'⎕WC'OLEClient' 'Excel.Application'
⎕NC'xl' 'XL'

9.2 9.2

The same is true of Instances of .NET Classes (Types) whether created using ⎕NEW or
.New.

⎕USING←'System'
dt←⎕NEW DateTime (3↑⎕TS)
DT←DateTime.New 3↑⎕TS
⎕NC 'dt' 'DT'

9.2 9.2

Note that if you remove the GUI component of a GUI object, using the Detach
method, it reverts to a plain namespace.

F.Detach
⎕NC⊂,'F'

9.1

Correspondingly, if you attach a GUI component to a plain namespace using the
monadic form of ⎕WC, it morphs into a GUI object

F.⎕WC 'PropertySheet'
⎕NC⊂,'F'

9.2

Chapter 4: System Functions 449

Class (Name-Class 9.4)
Classes created using the editor or ⎕FIX have name-class 9.4.

)ED ○MyClass

:Class MyClass
∇ r←NameClass x

:Access Public Shared
r←⎕NC x

∇
:EndClass ⍝ MyClass

⎕NC 'MyClass'
9

⎕NC⊂'MyClass'
9.4

⎕FIX ':Class UrClass' ':EndClass'
⎕NC 'MyClass' 'UrClass'

9.4 9.4

Note that the name of the Class is visible to a Public Method in that Class, or an
Instance of that Class.

MyClass.NameClass'MyClass'
9

MyClass.NameClass⊂'MyClass'
9.4

Interface (Name-Class 9.5)
Interfaces, defined by :Interface ... :EndInterface clauses, have name-
class 9.5.

:Interface IGolfClub
:Property Club

∇ r←get
∇
∇ set
∇

:EndProperty

∇ Shank←Swing Params
∇

:EndInterface ⍝ IGolfClub

⎕NC 'IGolfClub'
9

⎕NC ⊂'IGolfClub'
9.5

Chapter 4: System Functions 450

External Class (Name-Class 9.6)
External Classes (Types) exposed by .NET have name-class 9.6.

⎕USING←'System' 'System.IO'

⎕NC 'DateTime' 'File' 'DirectoryInfo'
9.6 9.6 9.6

Note that referencing a .NET class (type) with ⎕NC, fixes the name of that class in the
workspace and obviates the need for APL to repeat the task of searching for and
loading the class when the name is next used.

External Interface (Name-Class 9.7)
External Interfaces exposed by .NET have name-class 9.7.

⎕USING←'System.Web.UI,system.web.dll'

⎕NC 'IPostBackDataHandler' 'IPostBackEventHandler'
9.7 9.7

Note that referencing a .NET Interface with ⎕NC, fixes the name of that Interface in
the workspace and obviates the need for APL to repeat the task of searching for and
loading the Interface when the name is next used.

Chapter 4: System Functions 451

Native File Copy {R}←X ⎕NCOPY Y

This function copies native files and directories from one or more sources specified
by Y to a destination specified by X. ⎕NCOPY is similar to ⎕NMOVE (see Native File
Move on page 477).

X is a character vector that specifies the name of the destination.

Y is a character vector that specifies the name of the source, or a vector of character
vectors containing zero or more sources.

Source and destination path names may be full or relative (to the current working
directory) path names which adhere to the operating system conventions.

If X specifies an existent directory then each source in Y is copied into that directory,
otherwise X specifies the name of the copy. Xmust specify an existent directory if the
source contains multiple names or if the Wildcard option is set.

The shy result R contains count(s) of top-level items copied. If Y is a single source
name, R is a scalar otherwise it is a vector of the same length as Y.

Variant Options
⎕NCOPYmay be applied using the Variant operator with the optionsWildcard (the
Principal option), IfExists and PreserveAttributes.

Wildcard Option (Boolean)
0 the name or names in Y identifies a specific file name.

1

the name or names in Y that specify the base name and
extension (see File Name Parts on page 482), may also contain
the wildcard characters "?" and "*". An asterisk is a substitute
for any 0 or more characters in a file name or extension; a
question-mark is a substitute for any single character.

Note that whenWildcard is 1, element(s) of R can be 0, 1 or >1. IfWildcard is 0,
elements of R are always 1.

Chapter 4: System Functions 452

IfExists Option
The IfExists variant option determines what happens when a source file is to be
copied to a target file that already exists. It does not apply to directories, only to the
files within them.

Value Description

'Error'
Existing files will not be overwritten and an error
will be signalled. This is the default

'Skip'
Existing files will not be overwritten but the
corresponding copy operation will be skipped
(ignored).

'Replace' Existing files will be overwritten.

'ReplaceIfNewer'

Existing files may be overwritten if, and only if, the
corresponding source file is newer (more recently
modified) than the existing one, otherwise it is
skipped.

The following cases cause an error to be signalled regardless of the value of the
IfExists variant.

l If the source specifies a directory and the destination specifies an existing
file.

l If the source specifies a file and the same base name exists as a sub-directory
in the destination.

PreserveAttributes Option (Boolean)
The PreserveAttributes variant option determines whether or not file attributes are
preserved. It does not apply to directories, only to files.

0 file attributes are not preserved.

1
where possible, copied files will be given at least the same
modification time as the source. Other file attributes will be
preserved as permitted by the operating system and file system.

Note also that when files are copied across file systems, the different file systems may
have different timestamp granularity and the timestamps may not be exactly the
same.

Chapter 4: System Functions 453

Examples
There are a number of possibilities which are illustrated below. In all cases, if the
source is a file, a copy of the file is created. If the source is a directory, a copy of the
directory and all its contents is created.

Examples (single source, Wildcard is 0)
l The source name must be an existent file or directory.
l If the destination name does not exist but its path name does exist, the
source is copied to the destination name.

l If the destination name is an existing directory the copy is created within
that directory with the base name of the source.

⊃1 ⎕NPARTS ''
i:/Documents/Dyalog APL-64 17.0 Unicode Files/

⍝ Make a named back-up of the Session file
⊢'session.bak' ⎕NCOPY 'default.dlf'

1
⊢ ⎕MKDIR 'backups' ⍝ Make a backups directory

1
⍝ Copy the Session file to backups directory

⊢'backups'⎕NCOPY'default.dlf'
1

↑⊃0 (⎕NINFO⍠1) 'backups*'
backups/default.dlf

Examples (single source, Wildcard is 1)
l The source name may include wildcard characters which matches a number
of existing files and/or directories. The destination name must be an existing
directory.

l The files and/or directories that match the pattern specified by the source
name are copied into the destination directory. If there are no matches, zero
copies are made.

⊃1 ⎕NPARTS ''
i:/Documents/Dyalog APL-64 17.0 Unicode Files/

⊢ ⎕MKDIR 'backups' ⍝ Make a backups directory
1
⍝ Copy all files to backups directory

⊢'backups'(⎕NCOPY⍠'Wildcard' 1)'*.*'
3

Chapter 4: System Functions 454

↑⊃0 (⎕NINFO⍠1) 'backups*'
backups/default.dlf
backups/def_uk.dse
backups/UserCommand20.cache

Examples (multiple sources, Wildcard is 0)
l Each source name must specify a single file or directory which must exist.
The destination name must be an existing directory.

l Copies of each of the files and/or directories specified by the source base
names are made in the destination directory.

⊃1 ⎕NPARTS ''
i:/Documents/Dyalog APL-64 17.0 Unicode Files/

⊢ ⎕MKDIR 'backups' ⍝ Make a backups directory
1
⍝ Copy 2 files to backups directory

⊢'backups'⎕NCOPY'default.dlf' 'def_uk.dse'
1 1

↑⊃0 (⎕NINFO⍠1) 'backups*'
backups/default.dlf
backups/def_uk.dse

Examples (multiple sources, Wildcard is 1)
l The destination name must be an existing directory.
l Copies of each of the files and/or directories that match the patterns
specified by the source names (if any) are made in the destination directory.

⊃1 ⎕NPARTS ''
i:/Documents/Dyalog APL-64 17.0 Unicode Files/

⊢ ⎕MKDIR 'backups' ⍝ Make a backups directory
1
⍝ Copy files to backups directory

⊢'backups'(⎕NCOPY⍠1)'d*' 'UserCommand20.cache'
2 1

↑⊃0 (⎕NINFO⍠1) 'backups*'
backups/default.dlf
backups/def_uk.dse
backups/UserCommand20.cache

Chapter 4: System Functions 455

Notes
l The special directories . and .. can never be copied into an existing
directory.

l If any source name is a symbolic link it is dereferenced; that is, the source
or directory it references is copied rather than the link itself.

l In the result R, a directory together with all its contents is counted once. A
directory may be partially copied if the IfExists option is set to
'Replace' or 'ReplaceIfNewer').

l If an error occurs during the copy process then processing will immediately
stop and an error will be signalled. The operation is not atomic; some items
may be copied before this happens. In the event of an error there will be no
result and therefore no indication of how many names were copied before
the error occurred.

Chapter 4: System Functions 456

Native File Create {R}←X ⎕NCREATE Y

This function creates a new file. UnderWindows the file is opened with mode 66
(see Native File Tie on page 496). Under non-Windows operating systems the current
umask will specify the file permissions. The name of the new file is specified by the
left argument X which must be a simple character vector or scalar containing a valid
pathname for the file.

Y is 0 or a negative integer value that specifies an (unused) tie number by which the
file may subsequently be referred. If Y is 0, the system allocates the first (closest to
zero) available tie number which is returned as the result.

The shy result of ⎕NCREATE is the tie number of the new file.

Variant Options
⎕NCREATEmay be applied using the Variant operator with the optionsUnique and
IfExists. There is no primary option.

Unique Option (Boolean)
0 the file named by X will be created

1

a uniquely named file will be created by extending the base
name (see File Name Parts on page 482) with random
characters. If a unique name cannot be created then an error
will be signalled. The actual name of the file can be determined
from ⎕NNAMES or ⎕NINFO.

IfExists Option (character vector)

Error
⎕NCREATE will generate a FILE NAME ERROR if the file
already exists

Replace
⎕NCREATE will replace an existing file with an empty one of
the same name.

Chapter 4: System Functions 457

Examples
⊢'myfile' ⎕NCREATE 0

¯1
⎕NUNTIE ¯1
⊢'myfile' ⎕NCREATE 0

FILE NAME ERROR: myfile: Unable to create file ("The file
exists.")

⊢'myfile'⎕NCREATE 0
∧

⊢'myfile' (⎕NCREATE⍠'IfExists' 'Replace') 0

¯1 ⍝ Note that it uses same tie number as before

⊢'myfile' (⎕NCREATE⍠('Unique' 1)) 0
¯2

⎕NNUMS,⎕NNAMES
¯1 myfile
¯2 myfile52c36z

Notes:
l Setting IfExists to Replace has no effect when Unique is 1, because the
file cannot already exist.

l The IfExists option does not affect the operation of slippery ties.

Chapter 4: System Functions 458

Native File Delete {R}←{X}⎕NDELETE Y

This function deletes files and directories.

Y is a character vector or scalar containing a single file or directory name, or a vector
of character vectors containing zero or more file or directory names. Names must
conform to the naming rules of the host Operating System.

The optional left argument X is a numeric scalar; valid values are shown in the
following table. If omitted, its default value is 0.

0 Each file or directory with the given name must exist.

1
If the file or directory with the given name does not exist then no action is
taken. The result R may be used to determine whether the file or directory
was deleted or not.

2
If a name identifies a non-empty directory it, and all its contents, are to be
deleted.

3 Combination of 1 and 2.

R is a numeric count of top-level entities deleted when processing the corresponding
name in Y. If Y specifies a single name, R is a scalar. If Y is a vector of character
vectors R is a vector with the same length as Y.

Variant Options
⎕NDELETEmay be applied using the Variant operator with theWildcard option.

Wildcard Option (Boolean)
0 the name or names in Y identifies a specific file name.

1

the name or names in Y that specify the base name and
extension (see File Name Parts on page 482), may also contain
the wildcard characters "?" and "*". An asterisk is a substitute
for any 0 or more characters in a file name or extension; a
question-mark is a substitute for any single character.

Note that when Wildcard is 1, element(s) of R can be 0 or >1. If Wildcard is 0,
elements of R are always 1.

If Y specifies the name of a symbolic link, ⎕NDELETE deletes that symbolic link; the
target of the symbolic link is unaffected.

Chapter 4: System Functions 459

Examples
⎕NEXISTS'/Users/Pete/Documents/temp/t1/t2'

1
⊢⎕NDELETE'/Users/Pete/Documents/temp/t1/t2'

1
⊢⎕NDELETE'/Users/Pete/Documents/temp/t1/t2'

FILE NAME ERROR: Invalid file or directory name ("The
system cannot find the file specified.")

⊢⎕NDELETE'/Users/Pete/Documents/temp/t1/t2'
∧

⊢1 ⎕NDELETE'/Users/Pete/Documents/temp/t1/t2'
0

⊢⎕NDELETE 'temp1' 'temp2'
1 1

⊢⎕MKDIR'temp1' 'temp2'
1 1

⊢(⎕NDELETE⍠1)'t*'
2

⊢⎕MKDIR'temp1'
1

⊢'Hello World' ⎕NPUT 'temp1/hw.txt'
13

⊢⎕NDELETE 'temp1'
FILE ACCESS ERROR: temp1: Unable to delete directory
("The directory is not empty.")

⊢⎕NDELETE'temp1'
∧

⊢2 ⎕NDELETE 'temp1'
1

If the file is in use or the current user is not authorised to delete it, ⎕NDELETE will
not succeed but will instead generate a FILE ACCESS ERROR.

Note
When multiple names are specified they are processed in the order given. If an error
occurs at any point whilst deleting files or directories, processing will immediately
stop and an error will be signalled. The operation is not atomic; the directory
contents may be partially deleted before this happens. In the event of an error there
will be no result and therefore no indication of how many files were deleted before
the error occurred.

Chapter 4: System Functions 460

Native File Erase {R}←X ⎕NERASE Y

This function erases (deletes) a tied native file. Y is a negative integer tie number
associated with a tied native file. X is a simple character vector or scalar containing
the name of the same file and must be identical to the name used when it was opened
by ⎕NCREATE or ⎕NTIE.

The shy result of ⎕NERASE is the tie number that the erased file had.

Example
file ⎕nerase file ⎕ntie 0

Chapter 4: System Functions 461

New Instance R←⎕NEW Y

⎕NEW creates a new instance of the Class, Dyalog GUI object, or .NET Type
specified by Y.

Ymust be a 1- or 2-item scalar or vector. The first item is a reference to a Class or to a
.NET Type, or a character vector containing the name of a Dyalog GUI object.

The second item, if specified, contains the argument to be supplied to the Class or
Type Constructor or a list of property/value pairs for a Dyalog GUI object.

The result R is a reference to a new instance of Class, Dyalog GUI object, or Type Y.

For further information, see Interface Guide.

Class Example
:Class Animal

∇ Name nm
:Access Public
:Implements Constructor
⎕DF nm

∇
:EndClass ⍝ Animal

Donkey←⎕NEW Animal 'Eeyore'
Donkey

Eeyore

If ⎕NEW is called with just a Class reference (i.e. without parameters for the
Constructor), the default constructor will be called. A default constructor is defined
by a niladic function with the :Implements Constructor attribute. For example, the
Animal Class may be redefined as:

:Class Animal
∇ NoName

:Access Public
:Implements Constructor
⎕DF 'Noname'

∇
∇ Name nm

:Access Public
:Implements Constructor
⎕DF nm

∇
:EndClass ⍝ Animal

Chapter 4: System Functions 462

Horse←⎕NEW Animal
Horse

Noname

.NET Examples
⎕USING←'System' 'System.Web.Mail,System.Web.dll'
dt←⎕NEW DateTime (2006 1 1)
msg←⎕NEW MailMessage
⎕NC 'dt' 'msg' 'DateTime' 'MailMessage'

9.2 9.2 9.6 9.6

Note that .NET Types are accessed as follows.

If the name specified by the first item of Y would otherwise generate a VALUE
ERROR, and ⎕USING has been set, APL attempts to load the Type specified by Y
from the .NET assemblies (DLLs) specified in ⎕USING. If successful, the name
specified by Y is entered into the SYMBOL TABLE with a name-class of 9.6.
Subsequent references to that symbol (in this case DateTime) are resolved directly
and do not involve any assembly searching.

Dyalog GUI Examples
F←⎕NEW ⊂'Form'
F

#.[Form]

To specify the initial values of any properties, Y[2]must be a vector (or scalar) of
items each of which is of the form (PropertyName PropertyValue); the free-form
syntax implemented by ⎕WC and ⎕WS is not allowed.

⎕NEW'Form'(⊂'Caption' 'Hello')
#.[Form]

F←⎕NEW'Form'(('Caption' 'Hello')('Posn' (10 10)))
F

#.[Form]

Note that as ⎕NEW provides no facility to name a GUI object, the Event property
should use the onEvent syntax so that a callback function (or the result of ⎕DQ)
receives a ref to the object. Otherwise, without the onEvent syntax, the first element
of the argument to a callback function will contain a character vector such as '
[Form].[Button]' which merely describes the type of the object but does not
identify the object itself.

cap←'Caption' 'Push Me'
ev← 'Event' ('onSelect' 'foo')
F.(B←⎕NEW'Button'#.(pos cap ev))

Note that you may not create an instance of OCXClass using ⎕NEW.

Chapter 4: System Functions 463

Native File Exists R←⎕NEXISTS Y

This function reports whether or not file and directories exist.

Y is a character vector or scalar containing a single directory name, or a vector of
character vectors containing zero or more directory names. Names must conform to
the naming rules of the host Operating System.

If Y specifies a single name, the result R is a scalar 1 if a file or directory exists or 0 if
not. If Y is a vector of character vectors, R is a vector of 1s and 0s with the same
length as Y.0

Variant Options
⎕NEXISTSmay be applied using the Variant operator with theWildcard option.

Wildcard Option (Boolean)
0 the name or names in Y identifies a specific file name.

1

the name or names in Y that specify the base name and
extension (see File Name Parts on page 482), may also contain
the wildcard characters "?" and "*". An asterisk is a substitute
for any 0 or more characters in a file name or extension; a
question-mark is a substitute for any single character.

If the Wildcard option is 1, R indicates whether or not one or more matches to the
corresponding pattern in Y exist.

Example
⎕←⎕MKDIR'/Users/Pete/Documents/temp/t1/t2'

1
⎕NEXISTS'/Users/Pete/Documents/temp/t1/t2'

1
⎕NEXISTS'/Users/Pete/Documents/temp/t1/t2/pd'

0

⊢⎕MKDIR'temp1' 'temp2'
1 1

⎕NEXISTS 'temp1' 'temp2' 'temp3'
1 1 0

(⎕NEXISTS⍠1) 't*'
1

Note
If Y is a symbolic link, ⎕NEXISTS will return 1 whether or not the target of the
symbolic link exists.

Chapter 4: System Functions 464

Read Text File R←{X} ⎕NGET Y

This function reads the contents of the specified text file. See also Write Text File on
page 484.

Y is either a character vector/scalar containing the name of the file to be read, or a 2-
item vector whose first item is the file name and whose second is an integer scalar
specifying flags for the operation.

If flags is 0 (the default value if omitted) the content in the result R is a character
vector. If flags is 1 the result is a nested array of character vectors corresponding to
the lines in the file.

The optional left-argument X is either

l a character vector that specifies the file-encoding as shown in the table
below.

l a 256-element numeric vector that maps each possible byte value (0-255) to
a Unicode code point (1st element = Unicode code point corresponding to
byte value 0, and so on). ¯1 indicates that the corresponding byte value is
not mapped to any character. Apart from ¯1, no value may appear in the
table more than once.

Table 17: File Encodings
Encoding Description

UTF-8 The data is encoded as UTF-8 format.

UTF-16LE The data is encoded as UTF-16 little-endian format.

UTF-16BE The data is encoded as UTF-16 big-endian format.

UTF-16
The data is encoded as UTF-16 with the endianness of the host
system (currently BE on AIX platforms, LE on all others).

UTF-32LE The data is encoded as UTF-32 little-endian format.

UTF-32BE The data is encoded as UTF-32 big-endian format.

UTF-32
The data is encoded as UTF-32 with the endianness of the host
system (currently BE on AIX platforms, LE on all others).

ASCII The data is encoded as 7-bit ASCII format.

Windows-
1252

The data is encoded as 8-bit Windows-1252 format.

ANSI ANSI is a synonym of Windows-1252.

Chapter 4: System Functions 465

The above UTF formats may be qualified with -BOM or -NOBOM (e.g. UTF-8-
BOM). SeeWrite Text File on page 484.

Whether or not X is specified, if the start of the file contains a recognised Byte Order
Mark (BOM), the file is decoded according to the BOM. Otherwise, if X is specified
the file is decoded according to the value of X. Otherwise, the file is examined to try
to decide its encoding and is decoded accordingly.

The result R is a 3-element vector comprising (content) (encoding)
(newline) where:

content
A simple character vector, or a vector of character vectors,
according to the value of flags.

encoding

The encoding that was actually used to read the file. If this is a
UTF format, it will always include the appropriate endianness
(except for UTF-8 to which endianness doesn't apply) and a -
BOM or -NOBOM suffix to indicate whether or not a BOM is
actually present in the file. For example, UTF-16LE-BOM.

If X specified a user-defined encoding as a 256-element numeric
vector, encoding will be that same vector.

newline
Determined by the first occurrence in the file of one of the
newline characters identified in the line separator table, or ⍬ if
no such line separator is found.

If content is simple then all its line separators (listed in the table below) are
replaced by (normalised to) ⎕UCS 10, which in the Classic Edition must be in ⎕AVU
(else TRANSLATION ERROR).

If content is nested, it is formed by splitting the contents of the file on the
occurrence of any of the line separators shown in the table below. These line
separators are removed.

The 3rd element of the result newline is a numeric vector from the Value column of
the table below corresponding to the first occurrence of any of the newline
characters in the file. If none of these characters are present, the value is ⍬.

Chapter 4: System Functions 466

Table 18: Line separators:
Value Code Description

newline characters

13 CR Carriage Return (U+000D)

10 LF Line Feed (U+000A)

13 10 CRLF Carriage Return followed by Line Feed

133 NEL New Line (U+0085)

other line separator characters

11 VT Vertical Tab (U+000B)

12 FF Form Feed (U+000C)

8232 LS Line Separator (U+2028)

8233 PS Paragraph Separator (U+2029)

Chapter 4: System Functions 467

Native File Information R←{X}⎕NINFO Y

This function returns information about one or more files or directories.

Ymay be:

l a numeric scalar containing the tie number of a native file
l a character vector or scalar containing a file or directory name that conforms
to the naming rules of the host Operating System.

l a vector of character vectors and/or tie numbers

Variant Options
⎕NINFOmay be applied using the Variant operator with the options Wildcard (the
Principal option),Recurse and Follow.

Wildcard Option (Boolean)
0 the name or names in Y identifies a specific file name.

1

the name or names in Y that specify the base name and
extension (see File Name Parts on page 482), may also contain
the wildcard characters "?" and "*". An asterisk is a substitute
for any 0 or more characters in a file name or extension; a
question-mark is a substitute for any single character.

Recurse Option (Boolean)

0 the name(s) in Y are searched for only in the corresponding
specified directory

1
the name(s) in Y are searched for in the corresponding specified
directory as well as all sub-directories. IfWildcard is also 1,
the wild card search is performed recursively.

The optional left argument X is a simple numeric array containing values shown in
the following table.

Follow Option (Boolean)
0 the properties reported are those of the symbolic link itself

1 the properties reported for a symbolic link are those of the
target of the symbolic link

Chapter 4: System Functions 468

The optional left argument X is a simple numeric array containing values shown in
the following table.

X Property Default

0
Name of the file or directory, as a character vector. If Y is a tie
number then this is the name which the file was tied.

1

Type, as a numeric scalar:
0=Not known
1=Directory
2=Regular file
3=Character device
4=Symbolic link (only when Follow is 0)
5=Block device
6=FIFO (not Windows)
7=Socket (not Windows)

0

2 Size in bytes, as a numeric scalar 0

3 Last modification time, as a timestamp in ⎕TS format 7⍴0

4
Owner user id, as a character vector – on Windows a SID, on
other platforms a numeric userid converted to character format ''

5 Owner name, as a character vector ''

6

Whether the file or directory is hidden (1) or not (0), as a
numeric scalar. On Windows, file properties include a "hidden"
attribute; on non-Windows platforms a file or directory is
implicitly considered to be hidden if its name begins with a "."

¯1

7 Target of symbolic link (when Type is 4) ''

8 Current file position 0

9 Last access time in ⎕TS format, when available 7⍴0

10 Creation time in ⎕TS format, when available 7⍴0

11 Whether the file can (1) or cannot (0) be read (¯1 if unknown) ¯1

12
Whether the file can (1) or cannot (0) be written (¯1 if
unknown) ¯1

Chapter 4: System Functions 469

Note that the current file position identifies where ⎕NREAD will next read from or
⎕NAPPEND will next write to and is only pertinent when the corresponding value in
Y is a tie number rather than a name. It will be reported as 0 for named files.

Each value in X identifies a property of the file(s) or directory(ies) identified by Y
whose value is to be returned in the result R. If omitted, the default value of X is 0.
Values in Xmay be specified in any order and duplicates are allowed. A value in X
which is not defined in the table above will not generate an error but results in a ⍬
(Zilde) in the corresponding element of R.

R is the same shape as X and each element contains value(s) determined by the
property specified in the corresponding element in X. The depth of R depends upon
whether or not the Wildcard option is enabled. If, for any reason, the function is
unable to obtain a property value, (for example, if the file is in use exclusively by
another process) the default value shown in the last column is returned instead.

If theWildcard option is not enabled (the default) then Y specifies exactly one file or
directory and must exist. In this case each element in R is a single property value for
that file. If the name in Y does not exist, the function signals an error. On non-
Windows platforms "*" and "?" are treated as normal characters. On Windows an
error will be signalled since neither "*" nor "?" are valid characters for file or
directory names.

If theWildcard option is enabled, zero or more files and/or directories may match the
pattern in Y. In this case each element in R is a vector of property values for each of
the files. Note that no error will be signalled if no files match the pattern.

When using theWildcard option, matching of names is done case insensitively on
Windows and macOS, and case sensitively on other platforms. The names '.' and '..'
are excluded from any matches. The order in which the names match is not defined.

Examples
(0 1 2) ⎕NINFO 'c:/Users/Pete/Documents'

┌→───────────────────────────────────┐
│ ┌→──────────────────────┐ │
│ │c:/Users/Pete/Documents│ 1 163840 │
│ └───────────────────────┘ │
└∊───────────────────────────────────┘

⊃1⎕NPARTS '' ⍝ current working directory
c:/Users/Pete/

(⎕NINFO⍠1)'D*'
┌─────────────────────────────────────┐
│┌───────┬─────────┬─────────┬───────┐│
││Desktop│Documents│Downloads│Dropbox││
│└───────┴─────────┴─────────┴───────┘│
└─────────────────────────────────────┘

Chapter 4: System Functions 470

(⎕NINFO⍠1)'Documents/*.zip'
┌──────────────────────┐
│┌────────────────────┐│
││Documents/dyalog.zip││
│└────────────────────┘│
└──────────────────────┘

⍪ (0,⍳6) ⎕NINFO 'Documents/dyalog.zip'
┌──┐
│Documents/dyalog.zip │
├──┤
│2 │
├──┤
│3429284 │
├──┤
│2016 1 22 16 43 58 0 │
├──┤
│S-1-5-21-2756282986-1198856910-2233986399-1001│
├──┤
│HP/Pete │
├──┤
│0 │
└──┘

⊃1⎕NPARTS '' ⍝ current working directory
C:/Users/Pete/Documents/Dyalog APL-64 16.0 Unicode Files/

(⎕NINFO⍠1)'*.*'
┌──┐
│┌───────────┬──────────┬─────────┬───────────────────┐│
││default.dlf│def_uk.dse│jsonx.dws│UserCommand20.cache││
│└───────────┴──────────┴─────────┴───────────────────┘│
└──┘

⊢ ⎕MKDIR 'd1' 'd2'
1 1

'a'∘⎕NPUT¨'find' 'd1/find' 'd1/nofind' 'd2/find'
(⎕ninfo⍠'Recurse' 1)'find'

┌──────────────────────┐
│┌───────┬───────┬────┐│
││d1/find│d2/find│find││
│└───────┴───────┴────┘│
└──────────────────────┘

The following expression will return all Word document (.docx and .doc) in the
current directory, searching recursively through any sub-directories:

(⎕NINFO⍠('Recurse' 1)('Wildcard' 1))'*.docx' '*.doc'

Chapter 4: System Functions 471

Note
Of the file timestamps, only the last modification time should be considered reliable
and portable. Neither the access time or creation time are well supported across all
platforms.

Name List R←{X}⎕NL Y

Ymust be a simple numeric scalar or vector containing one or more of the values for
name-class. See also Name Classification on page 439.

X is optional. If present, it must be a simple character scalar or vector. R is a list of the
names of active objects whose name-class is included in Y in standard sorted order.

If any element of Y is negative, positive values in Y are treated as if they were
negative, and R is a vector of character vectors. Otherwise, R is simple character
matrix.

Furthermore, if ⎕NL is being evaluated inside the namespace associated with a Class
or an Instance of a Class, and any element of Y is negative, R includes the Public
names exposed by the Base Class (if any) and all other Classes in the Class hierarchy.

If X is supplied, R contains only those names which begin with any character of X.
Standard sorted order is in Unicode point order for Unicode editions, and in the
collation order of ⎕AV for Classic editions.

If an element of Y is an integer, the names of all of the corresponding sub-name-
classes are included in R. For example, if Y contains the value 2, the names of all
variables (name-class 2.1), fields (2.2), properties (2.3) and external or shared
variables (2.6) are obtained. Otherwise, only the names of members of the
corresponding sub-name-class are obtained.

Chapter 4: System Functions 472

Examples:
⎕NL 2 3

A
FAST
FIND
FOO
V

'AV' ⎕NL 2 3
A
V

⎕NL ¯9
Animal Bird BirdBehaviour Coin Cylinder

DomesticParrot Eeyore FishBehaviour Nickel Parrot
Penguin Polly Robin

⎕NL ¯9.3 ⍝ Instances
Eeyore Nickel Polly Robin

⎕NL ¯9.4 ⍝ Classes
Animal Bird Coin Cylinder DomesticParrot Parrot

Penguin
⎕NL ¯9.5 ⍝ Interfaces

BirdBehaviour FishBehaviour

⎕NL can also be used to explore Dyalog GUI Objects, .NET types and COM objects.

Dyalog GUI Objects
⎕NLmay be used to obtain lists of the Methods, Properties and Events provided by
Dyalog APL GUI Objects.

'F' ⎕WC 'Form'
F.⎕NL -2 ⍝ Properties

Accelerator AcceptFiles Active AlphaBlend AutoConf
Border BCol Caption ...

F.⎕NL -3 ⍝ Methods
Animate ChooseFont Detach GetFocus GetTextSize

ShowSIP Wait

F.⎕NL -8 ⍝ Events
Close Create DragDrop Configure ContextMenu
DropFiles DropObjects Expose Help ...

Chapter 4: System Functions 473

.NET Classes (Types)
⎕NL can be used to explore .NET types.

When a reference is made to an undefined name, and ⎕USING is set, APL attempts to
load the Type from the appropriate .NET Assemblies. If successful, the name is
entered into the symbol table with name-class 9.6.

⎕USING←'System'
DateTime

(System.DateTime)
⎕NL -9

DateTime
⎕NC,⊂'DateTime'

9.6

The names of the Properties and Methods of a .NET Type may then be obtained using
⎕NL.

DateTime.⎕NL -2 ⍝ Properties
MaxValue MinValue Now Today UtcNow

DateTime.⎕NL -3 ⍝ Methods
get_Now get_Today get_UtcNow op_Addition op_Equality
...

In fact it is not necessary to make a separate reference first, because the expression
Type.⎕NL (where Type is a .NET Type) is itself a reference to Type. So, (with
⎕USING still set to 'System'):

Array.⎕NL -3
BinarySearch Clear Copy CreateInstance IndexOf

LastIndexOf Reverse Sort

⎕NL -9
Array DateTime

Chapter 4: System Functions 474

Another use for ⎕NL is to examine .NET enumerations. For example:

⎕USING←'System.Windows.Forms,system.windows.forms.dll'

FormBorderStyle.⎕NL -2
Fixed3D FixedDialog FixedSingle FixedToolWindow None
Sizable SizableToolWindow

FormBorderStyle.FixedDialog.value__
3

FormBorderStyle.({⍵,[1.5]⍎¨⍵,¨⊂'.value__'}⎕NL -2)
Fixed3D 2
FixedDialog 3
FixedSingle 1
FixedToolWindow 5
None 0
Sizable 4
SizableToolWindow 6

COM Objects
Once a reference to a COM object has been obtained, ⎕NLmay be used to obtain lists
of its Methods, Properties and Events.

xl←⎕NEW'OLEClient'(⊂'ClassName'
'Excel.Application')

xl.⎕NL -2 ⍝ Properties
_Default ActiveCell ActiveChart ActiveDialog

ActiveMenuBar ActivePrinter ActiveSheet ActiveWindow
...

xl.⎕NL -3 ⍝ Methods
_Evaluate _FindFile _Run2 _Wait _WSFunction

ActivateMicrosoftApp AddChartAutoFormat AddCustomList
Browse Calculate ...

⎕NL -9
xl

Chapter 4: System Functions 475

Native File Lock {R}←X ⎕NLOCK Y

This function assists the controlled update of shared native files by locking a range of
bytes.

Locking enables controlled update of native files by co-operating users. A process
requesting a lock on a region of a file will be blocked until that region becomes
available. A write-lock is exclusive, whereas a read-lock is shared. In other words,
any byte in a file may be in one of only three states:

l Unlocked
l Write-locked by exactly one process.
l Read-locked by any number of processes.

Ymust be a simple integer scalar or vector containing 1, 2 or 3 items namely:

1. Tie number
2. Offset (from 0) of first byte of region. Defaults to 0
3. Number of bytes to lock. Defaults to maximum possible file size

Xmust be a simple integer scalar or vector containing 1 or 2 items, namely:

1. Type: 0: Unlock, 1:Read lock, 2:Write lock.
2. Timeout: Number of seconds to wait for lock before generating a TIMEOUT

error. Defaults to indefinite wait.

The shy result R is Y. To unlock the file, this value should subsequently be supplied
in the right argument to 0 ⎕NLOCK.

Examples:
2 ⎕NLOCK ¯1 ⍝ write-lock whole file
0 ⎕NLOCK ¯1 ⍝ unlock whole file.
1 ⎕NLOCK ¯1 ⍝ read (share) lock whole file.
2 ⎕NLOCK¨⎕NNUMS ⍝ write-lock all files.
0 ⎕NLOCK¨⎕NNUMS ⍝ unlock all files.

1 ⎕NLOCK ¯1 12 1 ⍝ read-lock byte 12.
1 ⎕NLOCK ¯1 0 10 ⍝ read-lock first 10 bytes.
2 ⎕NLOCK ¯1 20 ⍝ write-lock from byte 20 onwards.
2 ⎕NLOCK ¯1 10 2 ⍝ write-lock 2 bytes from byte 10
0 ⎕NLOCK ¯1 12 1 ⍝ remove lock from byte 12.

Chapter 4: System Functions 476

To lock the region immediately beyond the end of the file prior extending it:

⎕←region←2 ⎕NLOCK ¯1, ⎕NSIZE ¯1 ⍝ write-lock from EOF.
¯1 1000

... ⎕NAPPEND ¯1 ⍝ append bytes to file

... ⎕NAPPEND ¯1 ⍝ append bytes to file

0 ⎕NLOCK region ⍝ release lock.

The left argument may have a second optional item that specifies a timeout value. If a
lock has not been acquired within this number of seconds, the acquisition is
abandoned and a TIMEOUT error reported.

2 10 ⎕nlock ¯1 ⍝ wait up to 10 seconds for lock.

Notes:
There is no per-byte cost associated with region locking. It takes the same time to
lock/unlock a region, irrespective of that region's size.

Different file servers implement locks in slightly different ways. For example on
some systems, locks are advisory. This means that a write lock on a region precludes
other locks intersecting that region, but doesn't stop reads or writes across the region.
On the other hand,mandatory locks block both other locks and read/write
operations. ⎕NLOCK will just pass the server's functionality along to the APL
programmer without trying to standardise it across different systems.

All locks on a file will be removed by ⎕NUNTIE.

Blocked locking requests can be freed by a strong interrupt. UnderWindows, this
operation is performed from the Dyalog APL pop-up menu in the system tray.

Errors
In this release, an attempt to unlock a region that contains bytes that have not been
locked results in a DOMAIN ERROR.

A LIMIT ERROR results if the operating system lock daemon has insufficient
resources to honour the locking request.

Some systems support only write locks. In this case an attempt to set a read lock will
generate a DOMAIN ERROR, and it may be appropriate for the APL programmer to
trap the error and apply a write lock.

No attempt will be made to detect deadlock. Some servers do this and if such a
condition is detected, a DEADLOCK error (1008) will be reported.

Chapter 4: System Functions 477

Native File Move {R}←X ⎕NMOVE Y

This function moves native files and directories from one or more sources specified
by Y to a destination specified by X. ⎕NMOVE is similar to ⎕NCOPY (see Native File
Copy on page 451).

When possible ⎕NMOVE renames files and directories, which effects a fast move
when the source and destination are on the same file system. By default (see
RenameOnly option below), if ⎕NMOVE is unable to rename files or directories, it
instead copies them and deletes the originals.

X is a character vector that specifies the name of the destination.

Y is a character vector that specifies the name of the source, or a vector of character
vectors containing zero or more sources.

Sources and destinations may be full or relative (to the current working directory)
path names adhering to the operating system convention.

If Y specifies more than one source, Xmust be a character vector that specifies an
existent directory to which each of the sources in Y is to be moved.

The shy result R contains count(s) of top-level items moved. If Y is a single source
name, R is a scalar otherwise it is a vector of the same length as Y.

Variant Options
⎕NMOVEmay be applied using the Variant operator with the optionsWildcard (the
Principal option), IfExists and RenameOnly.

Wildcard Option (Boolean)
0 the name or names in Y identifies a specific file name.

1

the name or names in Y that specify the base name and
extension (see File Name Parts on page 482), may also contain
the wildcard characters "?" and "*". An asterisk is a substitute
for any 0 or more characters in a file name or extension; a
question-mark is a substitute for any single character.

Note that whenWildcard is 1, element(s) of R can be 0 or >1. IfWildcard is 0,
elements of R are always 1.

Chapter 4: System Functions 478

IfExists Option
The IfExists variant option determines what happens when a source file is to be
copied to a target file that already exists. It does not apply to directories, only to the
files within them.

Value Description

'Error'
Existing files will not be overwritten and an error will be
signalled. This is the default

'Skip'
Existing files will not be overwritten but the corresponding copy
operation will be skipped (ignored).

The following cases cause an error to be signalled regardless of the value of the
IfExists variant.

l If the source specifies a directory and the destination specifies an existing
file.

l If the source specifies a file and the same base name exists as a sub-directory
in the destination.

RenameOnly Option (Boolean)
The RenameOnly option determines what happens when it is not possible to rename
the source.

0 the source will be copied and the original deleted

1 the move will fail

Examples
A number of possibilities exist, illustrated by the following examples. In all cases, if
the source is a file, the file is moved. If the source is a directory, the directory and all
of its contents are moved.

Examples (single source, Wildcard is 0)
l The source name must be an existent file or directory.
l If the destination name does not exist but its path name does exist, the
source is moved to the destination name.

l If the destination name is an existing directory the source name is moved to
that directory.

Chapter 4: System Functions 479

⊃1 ⎕NPARTS ''
i:/Documents/Dyalog APL-64 17.0 Unicode Files/

⍝ Rename the Session file
⊢'session.dlf' ⎕NMOVE 'default.dlf'

1
⊢ ⎕MKDIR 'backups' ⍝ Make a backups directory

1
⍝ Move the Session file to backups directory

⊢'backups'⎕NMOVE'default.dlf'
1

↑⊃0 (⎕NINFO⍠1) 'backups*'
backups/default.dlf

Examples (single source, Wildcard is 1)
l The source name may include wildcard characters which matches a number
of existing files and/or directories. The destination name must be an existing
directory.

l The files and/or directories that match the pattern specified by the source
name are moved into the destination directory. If there are no matches, zero
copies are made.

⊃1 ⎕NPARTS ''
i:/Documents/Dyalog APL-64 17.0 Unicode Files/

⊢ ⎕MKDIR 'backups' ⍝ Make a backups directory
1
⍝ Move all files to backups directory

⊢'backups'(⎕NMOVE⍠'Wildcard' 1)'*.*'
3

↑⊃0 (⎕NINFO⍠1) 'backups*'
backups/default.dlf
backups/def_uk.dse
backups/UserCommand20.cache

Examples (multiple sources, Wildcard is 0)
l Each source name must specify a single file or directory which must exist.
The destination name must be an existing directory.

l Each of the files and/or directories specified by the source base names are
moved to the destination directory.

⊃1 ⎕NPARTS ''
i:/Documents/Dyalog APL-64 17.0 Unicode Files/

⊢ ⎕MKDIR 'backups' ⍝ Make a backups directory
1

Chapter 4: System Functions 480

⍝ Move 2 files to backups directory
⊢'backups'⎕NMOVE'default.dlf' 'def_uk.dse'

1 1
↑⊃0 (⎕NINFO⍠1) 'backups*'

backups/default.dlf
backups/def_uk.dse

Examples (multiple sources, Wildcard is 1)
l The destination name must be an existing directory.
l Each of the files and/or directories that match the patterns specified by the
source names (if any) are moved to the destination directory.

⊃1 ⎕NPARTS ''
i:/Documents/Dyalog APL-64 17.0 Unicode Files/

⊢ ⎕MKDIR 'backups' ⍝ Make a backups directory
1
⍝ Move files to backups directory

⊢'backups'(⎕NMOVE⍠1)'d*' 'UserCommand20.cache'
2 1

↑⊃0 (⎕NINFO⍠1) 'backups*'
backups/default.dlf
backups/def_uk.dse
backups/UserCommand20.cache

Note
When ⎕NMOVE copies and deletes files:

l The operation will take longer to complete.
l File modification times will be preserved but other attributes such as file
ownership may be changed.

l Read permissions will be needed on all files within a directory which is
moved.

l If the operation fails at any point and an error is signalled it is possible that
there may be files and/or directories left duplicated in both the source and
destination. It is not possible that a file or directory may be removed from
the source without having been copied to the destination.

Chapter 4: System Functions 481

Native File Names R←⎕NNAMES

This niladic function reports the names of all currently open native files. R is a
character matrix. Each row contains the name of a tied native file padded if
necessary with blanks. The names are identical to those that were given when
opening the files with ⎕NCREATE or ⎕NTIE. The rows of the result are in the order
in which the files were tied.

Native File Numbers R←⎕NNUMS

This niladic function reports the tie numbers associated with all currently open
native files. R is an integer vector of negative tie numbers. The elements of the result
are in the order in which the files were tied.

Chapter 4: System Functions 482

File Name Parts R←{X} ⎕NPARTS Y

Splits a file or directory name into its constituent parts.

Y is a character vector or scalar containing a single name, or a vector of character
vectors containing zero or more names. Names must conform to the file-naming rules
of the host Operating System.

The file(s) need not exist; indeed this system function makes no attempt to identify or
locate it/them.

The optional left-argument X specifies whether or not the name or names specified by
Y are normalised before being processed. The default value 0 means no
normalisation; 1 means normalise as follows:

l Pathnames are made absolute.
l On Windows, all "\" directory separators are changed to "/".
l The resultant name is simplified by removing extraneous directory
separators etc. On Windows, this includes resolving occurrences of "." and
".." within the name. On non-Windows platforms single "." are removed.
Note that ".." and symbolic links interact differently on Windows to other
platforms; on other platforms they cannot be removed without reference to
the file system itself and are left in place.

If Y is a scalar or vector, the result R is a 3-element vector of character vectors as
follows:

[1] path

[2] base name

[3] extension

The path identifies the directory in which the file exists.

The base name is the name of the file stripped of its path and extension, if any.

The extension is the file extension including the leading ".".

If Y is a vector of character vectors, R is a vector of 3-element character vectors and is
the same length as Y.

Chapter 4: System Functions 483

Examples
⎕CMD 'CD'⍝ Current working directory

c:\Users\Pete

1 ⎕NPARTS 'α'
┌→─────────────────────────┐
│ ┌→─────────────┐ ┌→┐ ┌⊖┐ │
│ │c:/Users/Pete/│ │α│ │ │ │
│ └──────────────┘ └─┘ └─┘ │
└∊─────────────────────────┘

1 ⎕NPARTS '\Users\Pete\Documents\dyalog.zip'
┌→───┐
│ ┌→───────────────────────┐ ┌→─────┐ ┌→───┐ │
│ │C:/Users/Pete/Documents/│ │dyalog│ │.zip│ │
│ └────────────────────────┘ └──────┘ └────┘ │
└∊───┘

⊃'.'⎕wg'APLVersion'
AIX-64

1 ⎕nparts'/home/andys/./..'
┌────────────┬──┬┐
│/home/andys/│..││
└────────────┴──┴┘

1 ⎕NPARTS '.' '..'
┌────────────────┬───────┐
│┌───┬─────────┬┐│┌───┬┬┐│
││i:/│Documents││││i:/││││
│└───┴─────────┴┘│└───┴┴┘│
└────────────────┴───────┘

Note that ⊃1 ⎕NPARTS '' returns the current working directory.

⊃1 ⎕NPARTS ''
┌→─────────────┐
│c:/Users/Pete/│
└──────────────┘

Chapter 4: System Functions 484

Write Text File {R}←X ⎕NPUT Y

This function writes character data to a text file. See also Read Text File on page 464.

Y is either a simple character vector or scalar containing the name of the file to be
written, or a 2-item vector whose first item is the file name and whose second is an
integer scalar specifying flags for the operation.

If flags is 0 (the default value if omitted) the file will not be overwritten if it
already exists and ⎕NPUT will signal an error. If flags is 1 the file will be
overwritten. If flags is 2 the file will be appended to; i.e.

flags file does not exist file exists

0 data is written to new file error signalled, file is unchanged

1 data is written to new file file is overwritten

2 data is written to new file data is appended to file

The left-argument X is comprised of 1, 2 or 3 items which identify (content)
(encoding) (newline) respectively.

content is either a vector of character vectors, each of which represents a line in the
file to be written, or a simple character vector.

If specified, encoding is either:

l a character vector from the first column in the table File Encodings on page
464. If encoding specifies a UTF format, it may be qualified with -BOM
(e.g. UTF-8-BOM), which causes a Byte Order Mark (BOM) to be written at
the beginning of the file or -NOBOM which does not. If the -BOM or -
NOBOM suffix is omitted, UTF-8 defaults to UTF-8-NOBOM, while the
other UTF formats default to -BOM.

l a 256-element numeric vector that maps each possible byte value (0-255) to
a Unicode code point (1st element = Unicode code point corresponding to
byte value 0, and so on). ¯1 indicates that the corresponding byte value is
not mapped to any character. Apart from ¯1, no value may appear in the
table more than once.

If omitted, encoding defaults to UTF-8-NOBOM.

Chapter 4: System Functions 485

Note: If a non-empty file is appended to:

l No BOM will be written, even if encoding specifies it.
l No check is made that the existing file content is text in the same encoding
format.

If specified, newline is numeric and is either ⍬ or a scalar or vector from the column
labelled Value in the newline characters section of the table Line separators: on
page 466. Any other value causes DOMAIN ERROR. If newline is omitted it
defaults to (13 10) on Windows and 10 on other platforms.

If content is nested, each element is considered to be to a logical line in the file,
and when the file is written, a line separator character corresponding to newline is
appended to each and every element, i.e. the data written to the file (excluding the
BOM) is:

∊content,¨⊂⎕UCS newline

If content is simple each and every LF (⎕UCS 10) character that it contains is first
replaced by the character corresponding to newline. If not present, one
LF character is added to the end of the array prior to these replacements.

In both cases, any other line separator characters are written as is to the file. This
allows the APL programmer to insert other line endings if so desired.

If content contains anything other than a character vector or scalar (or these, nested)
then a DOMAIN ERROR is signalled.

The shy result R is the number of bytes written to the file.

Note that when content is a vector of character vectors and encoding is omitted;
it is necessary to enclose the left argument.

Example:
txt←'mene' 'mene' 'tekel' 'upharsin'
⎕←(⊂txt) ⎕NPUT 'writing.txt'

25
⊢(⊂'adding' '3' 'lines')⎕NPUT'writing.txt' 2

18

Chapter 4: System Functions 486

Enqueue Event {R}←{X}⎕NQ Y

This system function generates an event or invokes a method.

While APL is executing, events occur "naturally" as a result of user action or of
communication with other applications. These events are added to the event queue
as and when they occur, and are subsequently removed and processed one by one by
⎕DQ. ⎕NQ provides an "artificial" means to generate an event and is analogous to
⎕SIGNAL.

If the left argument X is omitted or is 0, ⎕NQ adds the event specified by Y to the
bottom of the event queue. The event will subsequently be processed by ⎕DQ when it
reaches the top of the queue.

If X is 1, the event is actioned immediately by ⎕NQ itself and is processed in exactly
the same way as it would be processed by ⎕DQ. For example, if the event has a
callback function attached, ⎕NQ will invoke it directly. See Dequeue Events on page
333 for further details. If the event generates any subsidiary events (for example, a
KeyPress might generate a GotFocus), the subsidiary events are added to the event
queue rather than being executed immediately.

Note that it is not possible for one thread to use 1 ⎕NQ to send an event to another
thread.

If X is 2 and the name supplied is the name of an event, ⎕NQ performs the default
processing for the event immediately, but does not invoke a callback function if there
is one attached.

If X is 2 and the name supplied is the name of a (Dyalog APL) method, ⎕NQ invokes
the method. Its (shy) result is the result produced by the method.

If X is 3, ⎕NQ invokes a method in an OLE Control. The (shy) result of ⎕NQ is the
result produced by the method.

If X is 4, ⎕NQ signals an event from an ActiveXControl object to its host application.
The (shy) result of ⎕NQ is the result returned by the host application and depends
upon the syntax of the event. This case is only applicable to ActiveXControl objects.

Y is a nested vector containing an event message. The first two elements of Y are:

[1] Object ref or character vector

[2] Event numeric scalar or character vector which specifies an event or
method

Chapter 4: System Functions 487

Y[1]must specify an existing object. If not, ⎕NQ terminates with a VALUE ERROR.

If Y[2] specifies a standard event type, subsequent elements must conform to the
structure defined for that event type. If not, ⎕NQ terminates with a SYNTAX
ERROR. If additional elements (beyond those defined for the event type) are supplied
this will not cause an error, but is not recommended because Dyalog may extend the
event message in the future.

If Y[2] specifies a non-standard event type, Y[3] onwards (if present) may contain
arbitrary information. Although any event type not listed herein may be used,
numbers in the range 0-1000 are reserved for future extensions.

If ⎕NQ is used monadically, or with a left argument of 0, its (shy) result is always an
empty character vector. If a left argument of 1 is specified, ⎕NQ returns Y unchanged
or a modified Y if the callback function returns its modified argument as a result.

If the left argument is 2, ⎕NQ returns either the value 1 or a value that is appropriate.

Examples
⍝ Send a keystroke ("A") to an Edit Field
⎕NQ TEST.ED 'KeyPress' 'A'

⍝ Iconify all top-level Forms
{⎕NQ ⍵ 'StateChange' 1}¨'Form'⎕WN'.'

⍝ Set the focus to a particular field
⎕NQ TEST.ED3 40

⍝ Throw a new page on a printer
1 ⎕NQ PR1 'NewPage'

⍝ Terminate ⎕DQ under program control

'TEST'⎕WC 'Form' ... ('Event' 1001 1)
...
⎕DQ 'TEST'
...
⎕NQ TEST 1001 ⍝ From a callback

⍝ Call GetItemState method for a TreeView F.TV
+2 ⎕NQ F.TV 'GetItemState' 6

96

⍝ Report where APL is installed
+2 ⎕NQ'.' 'GetEnvironment' 'DYALOG'

C:\Program Files\Dyalog\Dyalog APL-64 15.0 Unicode

Chapter 4: System Functions 488

Nested Representation R←⎕NR Y

Ymust be a simple character scalar or vector which represents the name of a function
or a defined operator.

If Y is a name of a defined function or defined operator, R is a vector of text vectors.
The first element of R contains the text of the function or operator header.
Subsequent elements contain lines of the function or operator. Elements of R contain
no unnecessary blanks, except for leading indentation of control structures and the
blanks which precede comments.

If Y is the name of a variable, a locked function or operator, an external function or a
namespace, or is undefined, R is an empty vector.

Example
∇R←MEAN X ⍝ Average

[1] R←(+/X)÷⍴X
∇

+F←⎕NR'MEAN'
R←MEAN X ⍝Average R←(+/X)÷⍴X

⍴F
2

]display F
.→--.
| .→---------------------. .→----------. |
| | R←MEAN X ⍝ Average| | R←(+/X)÷⍴X| |
| '----------------------' '-----------' |
'∊--'

The definition of ⎕NR has been extended to names assigned to functions by
specification (←), and to local names of functions used as operands to defined
operators. In these cases, the result of ⎕NR is identical to that of ⎕CR except that the
representation of defined functions and operators is as described above.

Chapter 4: System Functions 489

Example
AVG←MEAN∘,

+F←⎕NR'AVG'
R←MEAN X ⍝ Average R←(+/X)÷⍴X ∘,

⍴F
3

]display F
.→--.
| .→--. |
	.→---------------------. .→----------.	∘ ,				
		R←MEAN X ⍝ Average		R←(+/X)÷⍴X		- -
	'----------------------' '-----------'					
'∊--'						
'∊--'

Native File Read R←⎕NREAD Y

This monadic function reads data from a native file. Y is a 3- or 4-element integer
vector whose elements are as follows:

[1] negative tie number,

[2] conversion code (see below),

[3]

count. If this value is ¯1, all of the elements defined by Y[2] are read
from the position specified by Y[4] to the end of the file. This may
result in the last few bytes in the file being ignored if they do not form
a complete element.

[4]
start byte, counting from 0. If this value omitted or is ¯1, data is read
starting from the current position in the file (initially 0).

Notes:
Y[2] specifies conversion to an APL internal form as follows. Note that the internal
formats for character arrays differ between the Unicode and Classic Editions.

If both Y[3] and Y[4] have the value ¯1, then ⎕NREAD reads data from the current
position in the file to the end of the file.

⎕NREAD can be used with any file. However, calling ⎕NREAD with at least one of Y
[3 4] set to ¯1 is intended for regular files only; using on pipes, FIFOs or other
special types of file is not recommended.

Chapter 4: System Functions 490

Table 19: Unicode Edition: Conversion Codes
Value Number of bytes read Result Type Result shape

11 count 1 bit Boolean 8 × count

80 count 8 bits character count

821 count 8 bits character count

83 count 8 bits integer count

160 2 × count 16-bits character count

163 2 × count 16 bits integer count

320 4 × count 32-bits character count

323 4 × count 32 bits integer count

645 8 × count 64 bits floating count

Table 20: Classic Edition: Conversion Codes
Value Number of bytes read Result Type Result shape

11 count 1 bit Boolean 8 × count

82 count 8 bits character count

83 count 8 bits integer count

163 2 × count 16 bits integer count

323 4 × count 32 bits integer count

645 8 × count 64 bits floating count

Note that types 80, 160 and 320 and 83 and 163 are exclusive to Dyalog APL.

Example
DATA←⎕NREAD ¯1 160 (0.5×⎕NSIZE ¯1) 0 ⍝ Unicode
DATA←⎕NREAD ¯1 82 (⎕NSIZE ¯1) 0 ⍝ Classic
DATA←⎕NREAD ¯1 82 ¯1 0 ⍝ Shorter version

1Conversion code 82 is permitted in the Unicode Edition for compatibility and
causes 1-byte data on file to be translated (according to ⎕NXLATE) from ⎕AV indices
into normal (Unicode) characters of type 80, 160 or 320.

Chapter 4: System Functions 491

Native File Rename {R}←X ⎕NRENAME Y

⎕NRENAME is used to rename a native file.

Y is a negative integer tie number associated with a tied native file. X is a simple
character vector or scalar containing a valid (and unused) file name.

The shy result of ⎕NRENAME is the tie number of the renamed file.

Native File Replace {R}←X ⎕NREPLACE Y

⎕NREPLACE is used to write data to a native file, replacing data which is already
there.

Xmust be a simple homogeneous APL array containing the data to be written.

Y is a 2- or 3-element integer vector whose elements are as follows:

[1] negative tie number,

[2]
start byte, counting from 0, at which the data is to be written; the value
¯1 causes the data is read from the current position in the file (initially,
0).

[3] conversion code (optional).

See Native File Read on page 489 for a list of valid conversion codes.

The shy result is the position within the file of the end of the record, or, equivalently,
the start of the following one. Used, for example, in:

⍝ Replace sequentially from indx.
{⍺ ⎕NREPLACE tie ⍵}/vec,indx

Unicode Edition
Unless you specify the data type in Y[3], a character array will by default be written
using type 80.

If the data will not fit into the specified character width (bytes) ⎕NREPLACE will fail
with a DOMAIN ERROR.

As a consequence of these two rules, you must specify the data type (either 160 or
320) in order to write Unicode characters whose code-point is in the range 256-
65535 and >65535 respectively.

Chapter 4: System Functions 492

Example
n←'test'⎕NTIE 0 ⍝ See Example on page 438

⎕NREAD n 80 3 0
abc

⎕NREAD n 160 7
ταβέρνα

⎕←'εστιατόριο'⎕NREPLACE n 3
DOMAIN ERROR

⎕←'εστιατόριο'⎕NREPLACE n 3
∧

⎕←'εστιατόριο'⎕NREPLACE n 3 160
23

⎕NREAD n 80 3 0
abc

⎕NREAD n 160 10
εστιατόριο

For compatibility with old files, you may specify that the data be converted to type
82 on output. The conversion (to ⎕AV indices) will be determined by the local value
of ⎕AVU.

Native File Resize {R}←X ⎕NRESIZE Y

This function changes the size of a native file.

Y is a negative integer tie number associated with a tied native file.

X is a single integer value that specifies the new size of the file in bytes. If X is
smaller than the current file size, the file is truncated. If X is larger than the current
file size, the file is extended and the value of additional bytes is undefined.

The shy result of ⎕NRESIZE is the tie number of the resized file.

Chapter 4: System Functions 493

Namespace {R}←{X}⎕NS Y

If specified, Xmust be a simple character scalar or vector identifying the name of a
namespace.

Y is either a character array which represents a list of names of objects to be copied
into the namespace, or a ref to a namespace, or an array produced by the ⎕OR of a
namespace.

Case 1
In the first case, Ymust be a simple character scalar, vector, matrix or a nested vector
of character vectors identifying zero or more workspace objects to be copied into the
namespace X. The identifiers in X and Ymay be simple names or compound names
separated by '.' and including the names of the special namespaces '#', '##' and
'⎕SE'.

The namespace X is created if it doesn't already exist. If the name is already in use for
an object other than a namespace, APL issues a DOMAIN ERROR.

If X is omitted, an unnamed namespace is created.

The objects identified in the list Y are copied into the namespace X.

If X is specified, the result R is the full name (starting with #. or ⎕SE.) of the
namespace X. If X is omitted, the result R is a namespace reference, or ref, to an
unnamed namespace.

Examples
+'X'⎕NS'' ⍝ Create namespace X.

#.X
⊢'X'⎕NS'VEC' 'UTIL.DISP'⍝ Copy VEC and DISP to X.

#.X
)CS X ⍝ Change to namespace X.

#.X
⊢'Y'⎕NS'#.MAT' '##.VEC' ⍝ Create #.X.Y © in

#.X.Y
⊢'#.UTIL'⎕NS'Y.MAT' ⍝ Copy MAT from Y to UTIL

#.UTIL.
#.UTIL

⊢'#'⎕NS'Y' ⍝ Copy namespace Y to root.
#

Chapter 4: System Functions 494

⊢''⎕NS'#.MAT' ⍝ Copy MAT to current
space.
#.X

⊢''⎕NS'' ⍝ Display current space.
#.X

⊢'Z'⎕NS ⎕OR'Y' ⍝ Create nspace from ⎕OR.
#.X.Z

NONAME←⎕NS '' ⍝ Create unnamed nspace
NONAME

#.[Namespace]

DATA←⎕NS¨3⍴⊂'' ⍝ Create 3-element vector of
⍝ distinct unnamed nspaces

DATA
#.[Namespace] #.[Namespace] #.[Namespace]

Case 2
The second case is where Y is a ref to a namespace or the ⎕OR of a namespace.

If Y is a ref to or a ⎕OR of a GUI object, #.Xmust be a valid parent for the GUI object
represented by Y, or the operation will fail with a DOMAIN ERROR.

Otherwise, the result of the operation depends upon the existence of X.

l If X does not currently exist (name class is 0), X is created as a complete
copy (clone) of the original namespace represented by Y. If Y is a ref to or
the ⎕OR of a GUI object or of a namespace containing GUI objects, the
corresponding GUI components of Y will be instantiated in X.

l If X is the name of an existing namespace (name class 9), the contents of Y,
including any GUI components, are merged into X. Any items in X with
corresponding names in Y (names with the same path in both Y and X) will
be replaced by the names in Y, unless they have a conflicting name class in
which case the existing items in X will remain unchanged. However, all
GUI spaces in X will be stripped of their GUI components prior to the
merge operation.

Chapter 4: System Functions 495

Namespace Indicator R←⎕NSI

R is a nested vector of character vectors containing the names of the spaces from
which functions in the state indicator were called (⍴⎕NSI←→⍴⎕RSI←→⍴⎕SI).

⎕RSI and ⎕NSI are identical except that ⎕RSI returns refs to the spaces whereas
⎕NSI returns their names. Put another way: ⎕NSI←→⍕¨⎕RSI.

Note that ⎕NSI contains the names of spaces from which functions were called not
those in which they are currently running.

Example
)OBJECTS

xx yy

⎕VR 'yy.foo'
∇ r←foo

[1] r←⎕SE.goo
∇
⎕VR'⎕SE.goo'

∇ r←goo
[1] r←⎕SI,[1.5]⎕NSI

∇

)CS xx
#.xx

calling←#.yy.foo
]display calling

┌→─────────────┐
↓ ┌→──┐ ┌→───┐ │
│ │goo│ │#.yy│ │
│ └───┘ └────┘ │
│ ┌→──┐ ┌→───┐ │
│ │foo│ │#.xx│ │
│ └───┘ └────┘ │
└∊─────────────┘

Native File Size R←⎕NSIZE Y

This reports the size of a native file.

Y is a negative integer tie number associated with a tied native file. The result R is
the size of the file in bytes.

Chapter 4: System Functions 496

Native File Tie {R}←X ⎕NTIE Y

⎕NTIE opens a native file.

X is a simple character vector or scalar containing a valid pathname for an existing
native file.

Y is a 1- or 2-element vector.

Y[1] is a negative integer value that specifies an (unused) tie number by which the
file may subsequently be referred.

Y[2] is optional and specifies the mode in which the file is to be opened. This is an
integer value calculated as the sum of 2 codes. The first code refers to the type of
access needed from users who have already tied the native file. The second code
refers to the type of access you wish to grant to users who subsequently try to open
the file while you have it open.

If Y[2] is omitted, the system tries to open the file with the default value of 66 (read
and write access for this process and for any subsequent processes that attempt to
access the file). If this fails, the system attempts to open the file with the value 64
(read access for this process, read and write for subsequent processes).

Needed from existing users Granted to subsequent users

0 read access 0 see note1

1 write access 16 no access (exclusive)

2 read and write access 32 read access

48 write access

64 read and write access

On UNIX systems, the second column has no meaning and only the first code
(16|mode) is passed to the open(2) call as the access parameter. See include file
fcntl.h for details. See also Native File Lock on page 475 which is not platform
dependent.

R is the tie number by which the file may subsequently be referred. If Y[1] is a
negative integer, then R is a shy result; if Y[1] is 0, R is an explicit result.

1The original meaning of this value is no longer relevant. 0 now means the same as 16 (no access).

Chapter 4: System Functions 497

Automatic Tie Number Allocation
A tie number of 0 as argument to a create or tie operation, allocates, and returns as an
explicit result, the first (closest to zero) available tie number. This allows you to
simplify code. For example:

from:

tie←¯1+⌊/0,⎕NNUMS ⍝ With next available number,
file ⎕NTIE tie ⍝ ... tie file.

to:

tie←file ⎕NTIE 0 ⍝ Tie with first available no.

Example
ntie←{ ⍝ tie file and return tie no.

⍺←2+64 ⍝ default all access.
⍵ ⎕ntie 0 ⍺ ⍝ return new tie no.

}

Note:
If the native file is already tied, executing ⎕NTIE with the same or a different tie
number simply re-ties it with the same or the new tie number. Re-tying a file with a
tie number of 0, allocates a new tie number. This feature may be used to re--tie the file
using a different mode.

Chapter 4: System Functions 498

Null Item R←⎕NULL

This is a reference to a null item, such as may be returned across the COM interface to
represent a null value. A null might be returned as the result of a .NET method or as
the value of an empty cell in a spreadsheet

⎕NULLmay be used in any context that accepts a namespace reference, in particular:

l As the argument to a defined function
l As an item of an array.
l As the argument to those primitive functions that take character data
arguments, for example: =, ≠, ≡, ≢, ,, ⍴, ⊃, ⊂

Example
'EX'⎕WC'OLEClient' 'Excel.Application'
WB←EX.Workbooks.Open 'simple.xls'

(WB.Sheets.Item 1).UsedRange.Value2
[Null] [Null] [Null] [Null] [Null]
[Null] Year [Null] [Null] [Null]
[Null] 1999 2000 2001 2002
[Null] [Null] [Null] [Null] [Null]
Sales 100 76 120 150
[Null] [Null] [Null] [Null] [Null]
Costs 80 60 100 110
[Null] [Null] [Null] [Null] [Null]
Margin 20 16 20 40

To determine which of the cells are filled, you can compare the array with ⎕NULL.

⎕NULL≢¨(WB.Sheets.Item 1).UsedRange.Value2
0 0 0 0 0
0 1 0 0 0
0 1 1 1 1
0 0 0 0 0
1 1 1 1 1
0 0 0 0 0
1 1 1 1 1
0 0 0 0 0
1 1 1 1 1

Chapter 4: System Functions 499

Native File Untie {R}←⎕NUNTIE Y

This closes one or more native files. Y is a scalar or vector of negative integer tie
numbers. The files associated with elements of Y are closed. Native file untie with a
zero length argument (⎕NUNTIE ⍬) flushes all file buffers to disk - see File Untie on
page 387 for more explanation.

The shy result of ⎕NUNTIE is a vector of tie numbers of the files actually untied.

Native File Translate {R}←{X}⎕NXLATE Y

This associates a character translation vector with a native file or, if Y is 0, with the
use by ⎕DR.

A translate vector is a 256-element vector of integers from 0-255. Each element maps
the corresponding ⎕AV position onto an ANSI character code.

For example, to map ⎕AV[17+⎕IO] onto ANSI 'a' (code 97), element 17 of the
translate vector is set to 97.

⎕NXLATE is a non-Unicode (Classic Edition) feature and is retained in the Unicode
Edition only for compatibility.

Y is either a negative integer tie number associated with a tied native file or 0. If Y is
negative, monadic ⎕NXLATE returns the current translation vector associated with
the corresponding native file. If specified, the left argument X is a 256-element vector
of integers that specifies a new translate vector. In this case, the old translate vector
is returned as a shy result. If Y is 0, it refers to the translate vector used by ⎕DR to
convert to and from character data.

The system treats a translate vector with value (⍳256)-⎕IO as meaning no
translation and thus provides raw input/output bypassing the whole translation
process.

The default translation vector established at ⎕NTIE or ⎕NCREATE time is derived
from the mapping defined in the current output translation table (normally
WIN.DOT) and maps alphabetic, numeric and most other characters in ⎕AV to their
corresponding ANSI positions. However, some characters are not resolved by this
process and it is recommended that users define translate vectors to cover all cases.

Chapter 4: System Functions 500

Unicode Edition
⎕NXLATE is relevant in the Unicode Edition only to process Native Files that
contain characters expressed as indices into ⎕AV, such as files written by the Classic
Edition.

In the Unicode Edition, when reading data from a Native File using conversion code
82, incoming bytes are translated first to ⎕AV indices using the translation table
specified by ⎕NXLATE, and then to type 80, 160 or 320 using ⎕AVU. When writing
data to a Native File using conversion code 82, characters are converted using these
two translation tables in reverse.

Sign Off APL ⎕OFF

This niladic system function terminates the APL session, returning to the shell
command level. The active workspace does not replace the last continuation
workspace.

Although ⎕OFF is niladic, you may specify an optional integer I to the right of the
system function which will be reported to the Operating System as the exit code. If I
is an expression generating an integer, you should put the expression in parentheses.
Imust be in the range 0..255, but note that on UNIX processes use values greater
than 127 to indicate the signal number which was used to terminate a process, and
that currently APL itself generates values 0..8; this list may be extended in future.
This list is documented in the Dyalog for Microsoft Windows Installation and
Configuration Guide: APL Exit Codes.

Variant {R}←{X}(f ⎕OPT B)Y

⎕OPT is synonymous with the Variant Operator ⍠ and can be used in both Classic
and Unicode Editions - unlike ⍠ which is valid in Unicode Editions only, and
⎕U2360 which is valid in Classic Editions only.

See Variant on page 183.

Chapter 4: System Functions 501

Object Representation R←⎕OR Y

⎕OR converts a defined function, defined operator or namespace to a special form,
described as its object representation, that may be assigned to a variable and/or
stored on a component file1. Classes and Instances are however outside the domain of
⎕OR.

Taking the ⎕OR of a defined function or operator is an extremely fast operation as it
simply changes the type information in the object's header, leaving its internal
structure unaltered. Converting the object representation back to an executable
function or operator using ⎕FX is also very fast.

However, the saved results of ⎕OR which were produced on a different hardware
platform or using an older version of Dyalog APL may require a significant amount
of processing when re-constituted using ⎕FX. For optimum performance, it is
strongly recommended that you save ⎕ORs using the same version of Dyalog APL
and on the same hardware platform that you will use to ⎕FX them.

⎕ORmay also be used to convert a namespace (either a plain namespace or a named
GUI object created by ⎕WC) into a form that can be stored in a variable or on a
component file. The namespace may be reconstructed using ⎕NS or ⎕WC with its
original name or with a new one. ⎕ORmay therefore be used to clone a namespace or
GUI object.

Ymust be a simple character scalar or vector which contains the name of an APL
object.

If Y is the name of a variable, the result R is its value. In this case, R←⎕OR Y is
identical to R←⍎Y.

Otherwise, R is a special form of the name Y, re-classified as a variable. The rank of R
is 0 (R is scalar), and the depth of R is 1. These unique characteristics distinguish the
result of ⎕OR from any other object. The Type of R (∊R) is itself. Note that although
R is scalar, it may not be index assigned to an element of an array unless it is
enclosed.

1⎕OR and GUI objects stored in workspaces or in component files are not portable between 32-bit
and 64-bit versions of Dyalog nor between different implementations (platforms) and are not
backwards compatible

Chapter 4: System Functions 502

If Y is the name of a function or operator, R is in the domain of the monadic functions
Same (⊣ and ⊢), Depth (≡), Disclose (⊃), Enclose (⊂), Rotate (⌽), Transpose (⍉), Index
(⌷), Indexing ([]), Format (⍕), Identity (+), Shape (⍴), Type (∊) and Unique (∪), of
the dyadic functions Left (⊣), Right (⊢), Without (~), Index Of (⍳), Intersection (∩),
Match (≡), Membership (∊), Not Match (≠) and Union (∪), and of the monadic system
functions Canonical Representation (⎕CR), Cross-Reference (⎕REFS), Fix (⎕FX),
Format (⎕FMT), Nested Representation (⎕NR) and Vector Representation (⎕VR).

Note that a ⎕OR object can be transmitted through an 'APL-style' TCP socket. This
technique may be used to transfer objects including namespaces between APL
sessions.

The object representation forms of namespaces produced by ⎕ORmay not be used as
arguments to any primitive functions. The only operations permitted for such objects
(or arrays containing such objects) are ⎕EX, ⎕FAPPEND, ⎕FREPLACE, ⎕NS, and
⎕WC.

Example
F←⎕OR ⎕FX'R←FOO' 'R←10'

⍴F

⍴⍴F
0

≡F
1

F≡∊F
1

The display of the ⎕OR form of a function or operator is a listing of the function or
operator. If the ⎕OR form of a function or operator has been enclosed, then the result
will display as the name preceded by the symbol ∇. It is permitted to apply ⎕OR to a
locked function or operator. In this instance the result will display as for the
enclosed form.

Chapter 4: System Functions 503

Examples
F

∇ R←FOO
[1] R←10

∇

⊂F
∇FOO

⎕LOCK'FOO'

⎕OR'FOO'
∇FOO

A←⍳5

A[3]←⊂F

A
1 2 ∇FOO 4 5

For the ⎕OR forms of two functions or operators to be considered identical, their
unlocked display forms must be the same, they must either both be locked or
unlocked, and any monitors, trace and stop vectors must be the same.

Example
F←⎕OR ⎕FX 'R←A PLUS B' 'R←A+B'

F≡⎕OR 'PLUS'
1

1 ⎕STOP 'PLUS'

F≡⎕OR 'PLUS'
0

Chapter 4: System Functions 504

Namespace Examples
The following example sets up a namespace called UTILS, copies into it the
contents of the UTIL workspace, then writes it to a component file:

)CLEAR
clear ws

)NS UTILS
#.UTILS

)CS UTILS
#.UTILS

)COPY UTIL
C:\WDYALOG\WS\UTIL saved Fri Mar 17 12:48:06 1995

)CS
#

'ORTEST' ⎕FCREATE 1
(⎕OR'UTILS')⎕FAPPEND 1

The namespace can be restored with ⎕NS, using either the original name or a new
one:

)CLEAR
clear ws

'UTILS' ⎕NS ⎕FREAD 1 1
#.UTILS

)CLEAR
clear ws

'NEWUTILS' ⎕NS ⎕FREAD 1 1
#.NEWUTILS

This example illustrates how ⎕OR can be used to clone a GUI object; in this case a
Group containing some Button objects. Note that ⎕WC will accept only a ⎕OR
object as its argument (or preceded by the "Type" keyword). You may not specify
any other properties in the same ⎕WC statement, but you must instead use ⎕WS to
reset them afterwards.

'F'⎕WC'Form'
'F.G1' ⎕WC 'Group' '&One' (10 10)(80 30)
'F.G1.B2'⎕WC'Button' '&Blue' (40 10)('Style' 'Radio')
'F.G1.B3'⎕WC'Button' '&Green' (60 10)('Style' 'Radio')
'F.G1.B1'⎕WC'Button' '&Red' (20 10)('Style' 'Radio')
'F.G2' ⎕WC ⎕OR 'F.G1'
'F.G2' ⎕WS ('Caption' 'Two')('Posn' 10 60)

Note too that ⎕WC and ⎕NSmay be used interchangeably to rebuild pure namespaces
or GUI namespaces from a ⎕OR object. You may therefore use ⎕NS to rebuild a Form
or use ⎕WC to rebuild a pure namespace that has no GUI components.

Chapter 4: System Functions 505

Search Path ⎕PATH

⎕PATH is a simple character vector representing a blank-separated list of namespaces.
It is approximately analogous to the PATH variable in Windows or UNIX

The ⎕PATH variable can be used to identify a namespace in which commonly used
utility functions reside. Functions or operators (NOT variables) which are copied
into this namespace and exported (see Export Object on page 345) can then be used
directly from anywhere in the workspace without giving their full path names.

Example
To make the DISPLAY function available directly from within any namespace.

⍝ Create and reference utility namespace.
⎕PATH←'⎕se.util'⎕ns''
⍝ Copy DISPLAY function from UTIL into it.
'DISPLAY'⎕se.util.⎕cy'UTIL'
⍝ (Remember to save the session to file).

In detail, ⎕PATH works as follows:

When a reference to a name cannot be found in the current namespace, the system
searches for it from left to right in the list of namespaces indicated by ⎕PATH. In
each namespace, if the name references a defined function (or operator) and the
export type of that function is non-zero (see Export Object on page 345), then it is
used to satisfy the reference. If the search exhausts all the namespaces in ⎕PATH
without finding a qualifying reference, the system issues a VALUE ERROR in the
normal manner.

The special character ↑ stands for the list of namespace ancestors:

##.## ##.##.## ...

In other words, the search is conducted upwards through enclosing namespaces,
emulating the static scope rule inherent in modern block-structured languages.

Note that the ⎕PATHmechanism is used ONLY if the function reference cannot be
satisfied in the current namespace. This is analogous to the case when the Windows
or UNIX PATH variable begins with a '.'.

Chapter 4: System Functions 506

Examples
 ⎕PATH Search in ...

1. '⎕se.util' Current space, then
⎕se.util, then
VALUE ERROR

2. '↑' Current space
Parent space: ##
Parent's parent space: ##.##
...
Root: # (or ⎕se if current space

was inside ⎕se)
VALUE ERROR

3. 'util ↑ ⎕se.util' Current space
util (relative to current space)
Parent space: ##
...
Root: # or ⎕se
⎕se.util
VALUE ERROR

Note that ⎕PATH is a session variable. This means that it is workspace-wide and
survives)LOAD and)CLEAR. It can of course, be localised by a defined function or
operator.

Chapter 4: System Functions 507

Program Function Key R←{X}⎕PFKEY Y

⎕PFKEY is a system function that sets or queries the programmable function keys.
⎕PFKEY associates a sequence of keystrokes with a function key. When the user
subsequently presses the key, it is as if he had typed the associated keystrokes one by
one.

Note that RIDE does not currently support the use of ⎕PFKEY; it is possible however
to associate simple strings to function keys - see the RIDE User Guide for more
information.

Y is an integer scalar in the range 0-255 specifying a programmable function key. If
X is omitted the result R is the current setting of the key. If the key has not been
defined previously, the result is an empty character vector.

If X is specified it is a simple or nested character vector defining the new setting of
the key. The value of X is returned in the result R.

The elements of X are either character scalars or 2-element character vectors which
specify keycodes. See UI Guide: Keyboard Shortcuts.

Programmable function keys are recognised in any of the three types of window
(SESSION, EDIT and TRACE) provided by the Dyalog APL development
environment. ⎕SR operates with the 'raw' function keys and ignores programmed
settings.

Note that key definitions can reference other function keys, such as "F1" or "F123".

The size of the buffer associated with ⎕PFKEY is specified by the pfkey_size
parameter.

Examples
(')FNS',⊂'ER')⎕PFKEY 1

┌─┬─┬─┬─┬──┐
│)│F│N│S│ER│
└─┴─┴─┴─┴──┘

(')VARS',⊂'ER')⎕PFKEY 2
┌─┬─┬─┬─┬─┬──┐
│)│V│A│R│S│ER│
└─┴─┴─┴─┴─┴──┘

'F1' 'F2' ⎕PFKEY 3 ⍝ Does)FNS and)VARS
┌──┬──┐
│F1│F2│
└──┴──┘

Chapter 4: System Functions 508

The following expression defines the action for F12 to be "move the text to the right
of the cursor to the left of the cursor".

'Rl' 'CT' 'LL' 'PT'⎕PFKEY 12
┌──┬──┬──┬──┐
│Rl│CT│LL│PT│
└──┴──┴──┴──┘

Print Precision ⎕PP

⎕PP is the number of significant digits in the display of numeric output. ⎕PPmay be
assigned any integer value in the range 1 to 34.

⎕PP is used to format numbers displayed directly. It is an implicit argument of
monadic function Format (⍕), monadic ⎕FMT and for display of numbers via ⎕ and ⍞
output. ⎕PP is ignored for the display of integers.

Examples:
⎕PP←10

÷3 6
0.3333333333 0.1666666667

⎕PP←3

÷3 6
0.333 0.167

If ⎕PP is set to a value ≥17 (when ⎕FR is 645) or 34 (when ⎕FR is 1287), floating-
point numbers may be converted between binary and character representation
without loss of precision. Then, if ⎕CT is 0 (to ensure exact comparison), for any
floating-point number N the expression N=⍎⍕N is true.

Chapter 4: System Functions 509

Profile Application {R}←{X}⎕PROFILE Y

⎕PROFILE facilitates the profiling of either CPU consumption or elapsed time for a
workspace. It does so by retaining time measurements collected for APL
functions/operators and function/operator lines. ⎕PROFILE is used to both control
the state of profiling and retrieve the collected profiling data.

Y specifies the action to perform and any options for that action, if applicable. Y is
case-insensitive. Note that the result R is in some cases shy.

Use Description

{state}←⎕PROFILE 'start'
{timer}

Turn profiling on using the specified
timer or resume if profiling was stopped

{state}←⎕PROFILE 'stop' Suspend the collection of profiling data

{state}←⎕PROFILE 'clear'
Turn profiling off, if active, and discard
any collected profiling data

{state}←⎕PROFILE
'calibrate'

Calibrate the profiling timer

state←⎕PROFILE 'state' Query profiling state

data←⎕PROFILE 'data' Retrieve profiling data in flat form

data←⎕PROFILE 'tree' Retrieve profiling data in tree form

Chapter 4: System Functions 510

⎕PROFILE has 2 states:

l active – the profiler is running and profiling data is being collected.
l inactive – the profiler is not running.

For most actions, the result of ⎕PROFILE is its current state and contains:

[1]
character vector indicating the ⎕PROFILE state having one of the
values 'active' or 'inactive'

[2]
character vector indicating the timer being used having one of the
values 'CPU' or 'elapsed'

[3]
call time bias in milliseconds. This is the amount of time, in
milliseconds, that is consumed for the system to take a time
measurement

[4]
timer granularity in milliseconds. This is the resolution of the timer
being used

{state}←⎕PROFILE 'start' {timer}
Turn profiling on; timer is an optional case-independent character vector
containing 'CPU' or 'elapsed' or 'none' or 'coverage'. If omitted, it
defaults to 'CPU'. If timer is 'none', ⎕PROFILE records just the number of
times each line of code is executed without incurring the timing overhead. If timer
is 'coverage', ⎕PROFILE only identifies which lines of code are executed
without incurring the timing or counting overhead.

The first time a particular timer is chosen, ⎕PROFILE will spend 1000 milliseconds
(1 second) to approximate the call time bias and granularity for that timer.

⊢⎕PROFILE 'start' 'CPU'
active CPU 0.0001037499999 0.0001037499999

{state}←⎕PROFILE 'stop'
Suspends the collection of profiling data.

⊢⎕PROFILE 'stop'
inactive CPU 0.0001037499999 0.0001037499999

{state}←⎕PROFILE 'clear'
Clears any collected profiling data and, if profiling is active, places profiling in an
inactive state.

⊢⎕PROFILE 'clear'
inactive 0 0

Chapter 4: System Functions 511

{state}←⎕PROFILE 'calibrate'
Causes ⎕PROFILE to perform a 1000 millisecond calibration to approximate the call
time bias and granularity for the current timer. Note, a timer must have been
previously selected by using ⎕PROFILE 'start'.

⎕PROFILE will retain the lesser of the current timer values compared to the new
values computed by the calibration. The rationale for this is to use the smallest
possible values of which we can be certain.

⊢⎕PROFILE'calibrate'
active CPU 0.0001037499997 0.0001037499997

state←⎕PROFILE 'state'
Returns the current profiling state.

)clear
clear ws

⎕PROFILE 'state'
inactive 0 0

⎕PROFILE 'start' 'CPU'
 active CPU 0.0001037499997 0.0001037499997

⎕PROFILE 'state'
active CPU 0.0001037499997 0.0001037499997

data←{X} ⎕PROFILE 'data'
Retrieves the collected profiling data. If the optional left argument X is omitted, the
result is a matrix with the following columns:

[;1] function name
[;2] function line number or ⍬ for a whole function entry
[;3] number of times the line or function was executed

[;4]
accumulated time (ms) for this entry exclusive of items called by this
entry

[;5]
accumulated time (ms) for this entry inclusive of items called by this
entry

[;6] number of times the timer function was called for the exclusive time
[;7] number of times the timer function was called for the inclusive time

Chapter 4: System Functions 512

Example: (numbers have been truncated for formatting)
⎕PROFILE 'data'

#.foo 1 1.04406 39347.64945 503 4080803

#.foo 1 1 0.12488 0.124887 1 1

#.foo 2 100 0.58851 39347.193900 200 4080500

#.foo 3 100 0.21340 0.213406 100 100

#.NS1.goo 100 99.44404 39346.6053 50300 4080300

#.NS1.goo 1 100 0.61679 0.616793 100 100

#.NS1.goo 2 10000 67.80292 39314.9642 20000 4050000

#.NS1.goo 3 10000 19.60274 19.6027 10000 10000

If X is specified it must be a simple vector of column indices. In this case, the result
has the same shape as X and is a vector of the specified column vectors:

X ⎕PROFILE 'data' ←→ ↓[⎕IO](⎕PROFILE 'data')[;X]

If column 2 is included in the result, the value ¯1 is used instead of ⍬ to indicate a
whole-function entry.

data←{X} ⎕PROFILE 'tree'
Retrieve the collected profiling data in tree format:

[;1] depth level
[;2] function name
[;3] function line number or ⍬ for a whole function entry
[;4] number of times the line or function was executed

[;5]
accumulated time (ms) for this entry exclusive of items called by
this entry

[;6]
accumulated time (ms) for this entry inclusive of items called by
this entry

[;7] number of times the timer function was called for the exclusive time
[;8] number of times the timer function was called for the inclusive time

The optional left argument is treated in exactly the same way as for X ⎕PROFILE
'data'.

Chapter 4: System Functions 513

Example:
⎕PROFILE 'tree'

0 #.foo 1 1.04406 39347.64945 503 4080803
1 #.foo 1 1 0.12488 0.12488 1 1
1 #.foo 2 100 0.58851 39347.19390 200 4080500
2 #.NS1.goo 100 99.44404 39346.60538 50300 4080300
3 #.NS1.goo 1 100 0.61679 0.61679 100 100
3 #.NS1.goo 2 10000 67.80292 39314.96426 20000 4050000
4 #.NS2.moo 10000 39247.16133 39247.16133 4030000 4030000
5 #.NS2.moo 1 10000 39.28315 39.28315 10000 10000
5 #.NS2.moo 2 1000000 36430.65236 36430.65236 1000000 1000000
5 #.NS2.moo 3 1000000 1645.36214 1645.36214 1000000 1000000
3 #.NS1.goo 3 10000 19.60274 19.60274 10000 10000
1 #.foo 3 100 0.21340 0.21340 100 100

Note that rows with an even depth level in column [;1] represent function
summary entries and odd depth level rows are function line entries. Recursive
functions will generate separate rows for each level of recursion.

Notes
Profile Data Entry Types
The results of ⎕PROFILE 'data' and ⎕PROFILE 'tree' have two types of
entries; function summary entries and function line entries. Function summary entries
contain ⍬ in the line number column, whereas function line entries contain the line
number. Dfns line entries begin with 0 as they do not have a header line like
traditional functions. The timer data and timer call counts in function summary
entries represent the aggregate of the function line entries plus any time spent that
cannot be directly attributed to a function line entry. This could include time spent
during function initialisation, etc.

Example:
 #.foo 1 1.04406 39347.649450 503 4080803
 #.foo 1 1 0.12488 0.124887 1 1
#.foo 2 100 0.58851 39347.193900 200 4080500
#.foo 3 100 0.21340 0.213406 100 100

Timer Data Persistence
The profiling data collected is stored outside the workspace and will not impact
workspace availability. The data is cleared upon workspace load, clear workspace,
⎕PROFILE 'clear', or interpreter sign off.

Chapter 4: System Functions 514

The PROFILE User Command
]PROFILE is a utility which implements a high-level interface to ⎕PROFILE and
provides reporting and analysis tools that act upon the profiling data. For further
information, see Tuning Applications using the Profile User Command.

Using ⎕PROFILE Directly
If you choose to use ⎕PROFILE directly, the following guidelines and information
may be of use to you.

Note: Running your application with ⎕PROFILE turned on incurs a significant
processing overhead and will slow your application down.

Decide which timer to use
⎕PROFILE supports profiling of either CPU or elapsed time. CPU time is generally
of more interest in profiling application performance.

Simple Profiling
To get a quick handle on the top CPU time consumers in an application, use the
following procedure:

l Make sure the application runs long enough to collect enough data to
overcome the timer granularity – a reasonable rule of thumb is to make sure
the application runs for at least (4000×4⊃⎕PROFILE 'state')
milliseconds.

l Turn profiling on with ⎕PROFILE 'start' CPU
l Run your application.
l Pause the profiler with ⎕PROFILE 'stop'
l Examine the profiling data from ⎕PROFILE 'data' or ⎕PROFILE
'tree' for entries that consume large amounts of resource.

This should identify any items that take more than 10% of the run time.

To find finer time consumers, or to focus on elapsed time rather than CPU time, take
the following additional steps prior to running the profiler:

Chapter 4: System Functions 515

Turn off as much hardware as possible. This would include peripherals, network
connections, etc.

l Turn off as many other tasks and processes as possible. These include anti-
virus software, firewalls, internet services, background tasks.

l Raise the priority on the Dyalog APL task to higher than normal, but in
general avoid giving it the highest priority.

l Run the profiler as described above.

Doing this should help identify items that take more than 1% of the run time.

Advanced Profiling
The timing data collected by ⎕PROFILE is not adjusted for the timer's call time bias;
in other words, the times reported by ⎕PROFILE include the time spent calling the
timer function. One effect of this can be to make "cheap" lines that are called many
times seem to consume more resource. If you desire more accurate profiling
measurements, or if your application takes a short amount of time to run, you will
probably want to adjust for the timer call time bias. To do so, subtract from the timing
data the timer's' 'call time bias multiplied by the number of times the timer was called.

Example:
CallTimeBias←3⊃⎕PROFILE 'state'
RawTimes←⎕PROFILE 'data'
Adjusted←RawTimes[;4 5]-RawTimes[;6 7]×CallTimeBias

Chapter 4: System Functions 516

Print Width ⎕PW

⎕PW is the maximum number of output characters per line before folding the display.

⎕PWmay be assigned any integer value in the range 42 to 32767. Note that in
versions of Dyalog APL prior to 13.0 ⎕PW had a minimum value of 30; this was
increased to support 128-bit decimal values.

If an attempt is made to display a line wider than ⎕PW, then the display will be folded
at or before the ⎕PW width and the folded portions indented 6 spaces. The display of
a simple numeric array may be folded at a width less than ⎕PW so that individual
numbers are not split.

⎕PW only affects output, either direct or through ⎕ output. It does not affect the
result of the function Format (⍕), of the system function ⎕FMT, or output through the
system functions ⎕ARBOUT and ⎕ARBIN, or output through ⍞.

Note that if the auto_pw parameter (Options/Configure/Session/Auto PW) is set to 1,
⎕PW is automatically adjusted whenever the Session window is resized. In these
circumstances, a value assigned to ⎕PW will only apply until the Session window is
next resized.

Examples
⎕PW←42

⎕←3⍴÷3
0.3333333333 0.3333333333 0.3333333333

0.3333333333

Chapter 4: System Functions 517

Replace R←{X}(A ⎕R B) Y

⎕R (Replace) and ⎕S (Search) are system operators which take search pattern(s) as
their left arguments and transformation rule(s) as their right arguments; the derived
function operates on text data to perform either a search, or a search and replace
operation.

The search patterns may include Regular Expressions so that complex searches may
be performed. ⎕R and ⎕S utilise the open-source regular-expression search engine
PCRE, which is built into Dyalog APL and distributed according to the PCRE
licence which is published separately.

The transformation rules are applied to the text which matches the search patterns;
they may be given as a simple character vector, numeric codes, or a function.

The two system operators, ⎕R for replace and ⎕S for search, are syntactically
identical. With ⎕R, the input document is examined; text which matches the search
pattern is amended and the remainder is left unchanged. With ⎕S, each match in the
input document results in an item in the result whose type is dependent on the
transformation specified. The operators use the Variant operator to set options.

A specifies one or more search patterns, being given as a single character, a character
vector, a vector of character vectors or a vector of both characters and character
vectors. See search pattern following.

B is the transformation to be performed on matches within the input document; it
may be either one or more transformation patterns (specified as a character, a
character vector, a vector of character vectors, or a vector of both characters and
character vectors), one or more transformation codes (specified as a numeric scalar or
a numeric vector) or a function; see transformation pattern, transformation codes
and transformation function following.

Y specifies the input document; see input document below.

X optionally specifies an output stream; see output below.

R is the result value; see output below.

Chapter 4: System Functions 518

Examples of replace operations
('.at' ⎕R '\u0') 'The cat sat on the mat'

The CAT SAT on the MAT

In the search pattern the dot matches any character, so the pattern as a whole matches
sequences of three characters ending 'at'. The transformation is given as a character
string, and causes the entire matching text to be folded to upper case.

('\w+' ⎕R {⌽⍵.Match}) 'The cat sat on the mat'
ehT tac tas no eht tam

The search pattern matches each word. The transformation is given as a function,
which receives a namespace containing various variables describing the match, and it
returns the match in reverse, which in turn replaces the matched text.

Examples of search operations
STR←'The cat sat on the mat'
('.at' ⎕S '\u0') STR

CAT SAT MAT

The example is identical to the first, above, except that after the transformation is
applied to the matches the results are returned in a vector, not substituted into the
source text.

('.at' ⎕S {⍵.((1↑Offsets),1↑Lengths)}) STR
4 3 8 3 19 3

When searching, the result vector need not contain only text and in this example the
function returns the numeric position and length of the match given to it; the
resultant vector contains these values for each of the three matches.

('.at' ⎕S 0 1) STR
4 3 8 3 19 3

Here the transformation is given as a vector of numeric codes which are a short-hand
for the position and length of each match; the overall result is therefore identical to
the previous example.

These examples all operate on a simple character vector containing text, but the text
may be given in several forms - character vectors, vectors of character vectors, and
external data streams. These various forms constitute a 'document'. When the result
also takes the form of a document it may be directed to a stream.

Chapter 4: System Functions 519

Input Document
The input document may be an array or a data stream.

When it is an array it may be given in one of two forms:

1. A character scalar or vector
2. A vector of character vectors

Currently, the only supported data stream is a native file, specified as tie number,
which is read from the current position to the end. If the file is read from the start, and
there is a valid Byte OrderMark (BOM) at the start of it, the data encoding is
determined by this BOM. Otherwise, data in the file is assumed to be encoded as
specified by the InEnc option.

Hint: once a native file has been read to the end by ⎕R or ⎕S it is possible to reset the
file position to the start so that it may be read again using:

{} ⎕NREAD tienum 82 0 0

The input document is comprised of lines of text. Line breaks may be included in the
data:

Implicitly

l Between each item in the outer vector (type 2, above)

Explicitly, as

l carriage return
l line feed
l carriage return and line feed together, in that order
l vertical tab (U+000B)
l newline (U+0085)
l form Feed (U+000C)
l line Separator (U+2028)
l paragraph Separator (U+2029)

The implicit line ending character may be set using the EOL option. Explicit line
ending characters may also be replaced by this character - so that all line endings are
normalised - using the NEOL option.

The input document may be processed in linemode, documentmode ormixedmode.
In document mode and mixed mode, the entire input document, line ending
characters included, is passed to the search engine; in line mode the document is split
on line endings and passed to the search engine in sections without the line ending
characters. The choice of mode affects both memory usage and behaviour, as
documented in the section 'Line, document and mixed modes'.

Chapter 4: System Functions 520

Output
The format of the output is dependent on whether ⎕S or ⎕R are in use, whether an
output stream is specified and, for ⎕R, the form of the input and whether the
ResultText option is specified.

An output data streammay optionally be specified. Currently, the only supported
data stream is a native file, specified as tie number, and all output will be appended
to it. Data in the stream is encoded as specified by theOutEnc option. If this
encoding specifies a Byte OrderMark and the file is initially empty then the Byte
OrderMark will be written at the start. Appending to existing data using a different
encoding is permitted but unlikely to produce desirable results. If an input stream is
also used, care must be taken to ensure the input and output streams are not the same.

⎕R
With no output stream specified and unless overridden by the ResultText option, the
derived function result will be a document which closely matches the format of the
input document, as follows:

A character scalar or vector input will result in a character vector output. Any
and all line endings in the output will be represented by line ending characters
within the character vector.

A vector of character vectors as input will result in a vector of character vectors as
document output. Any and all line endings in the output document will be implied at
the end of each character vector.

A stream as input will result in a vector of character vectors document output. Any
and all line endings in the output document will be implied at the end of each
character vector.

Note that the shape of the output document may be significantly different to that of
the input document.

If the ResultText option is specified, the output type may be forced to be a character
vector or vector of character vectors as described above, regardless of the input
document.

With an output stream specified the text is appended to the stream. If the appended
text does not end with a line ending character then the line ending character
specified by the EOL option is also appended. The resulting length of the file is
returned as a shy result.

Chapter 4: System Functions 521

⎕S
With no output stream specified, the result will be a vector containing one item for
each match in the input document, of types determined by the transformation
performed on each match.

With an output stream specified there is no result - instead each match is appended to
the stream. If any match does not end with a line ending character then the line
ending character specified by the EOL option is also appended. Only text may be
written to the stream, which means:

l When a transformation function is used, the function may only generate a
character vector result.

l Transformation codes may not be used.

Search pattern
A summary of the syntax of the search pattern is reproduced from the PCRE
documentation. See Appendix A - PCRE Syntax Summary on page 660.

A full description is provided in Appendix B - PCRE Regular Expression Details on
page 667.

There may be multiple search patterns. If more than one search pattern is specified
and more than one pattern matches the same part of the input document then priority
is given to the pattern specified first.

Note that when anchoring a search to the beginning of a line, it is essential to use ^
(⎕UCS 94), not ∧ (⎕UCS 8743).

Transformation pattern
For each match in the input document, the transformation pattern causes the creation
of text which, for ⎕R, replaces the matching text and, for ⎕S, generates one item in
the result.

There may be either one transformation pattern, or the same number of transformation
patterns as search patterns. If there are multiple search patterns and multiple
transformation patterns then the transformation pattern used corresponds to the search
pattern which matched the input text.

Transformation patterns may not be mixed with transformation codes or functions.

Chapter 4: System Functions 522

The following characters have special meaning:

% acts as a placeholder for the entire line (line mode) or document
(document mode or mixed mode) which contained the match

& acts as a placeholder for the entire portion of text which
matched

\n represents a line feed character

\r represents a carriage return

\0 equivalent to &

\n acts as a placeholder for the text which matched the first to
ninth subpattern; n may be any single digit value from 1 to 9

\(n) acts as a placeholder for the text which matched the numbered
subpattern; n may have an integer value from 0 to 63.

\<name> acts as a placeholder for the text which matched the named
subpattern

\\ represents the backslash character

\% represents the percent character

\& represents the ampersand character

\x{nnnn}
represents a Unicode code point; nnnn is a hexadecimal
sequence of characters yielding a value between 0x1 and
0x10FFFF.

The above may be qualified to fold matching text to upper- or lower-case by using
the u and l modifiers respectively. Character sequences beginning with the backslash
place the modifier after the backslash; character sequences with no leading backslash
add both a backslash and the modifier to the start of the sequence, for example:

\u& acts as a placeholder for the entire portion of text which matched,
folded to upper case

\l0 equivalent to \l&

Character sequences beginning with the backslash other that those shown are
invalid. All characters other than those shown are literal values and are included in
the text without modification.

Chapter 4: System Functions 523

Transformation codes
The transformation codes are a numeric scalar or vector. Transformation codes may
only be used with ⎕S. For each match in the input document, a numeric scalar or
vector of the same shape as the transformation codes is created, with the codes
replaced with values as follows:

0 The offset from the start of the line (line mode) or document (document
mode or mixed mode) of the start of the match.

1 The length of the match.

2
In line mode, the block number in the source document of the start of
the match. The value is origin zero. In document mode or mixed mode
this value is always zero.

3 The pattern number which matched the input document, origin zero.

Chapter 4: System Functions 524

Transformation Function
The transformation function is called for each match within the input document. The
function is monadic and is passed a namespace, containing the following variables:

Block
The entire line (line mode) or document (document mode or
mixed mode) in which the match was found.

BlockNum

With line mode, the block (line) number in the source
document of the start of the match. The value is origin zero.
With document mode or mixed mode the entire document is
contained within one block and this value is always zero.

Pattern The search pattern which matched.

PatternNum The index-zero pattern number which matched.

Match The text within Block which matched Pattern.

Offsets

A vector of one or more offsets relative to the start of Block.
The first value is the offset of the entire match; any and all
additional values are the offsets of the portions of the text
which matched the subpatterns, in the order of the
subpatterns within Pattern. ¯1 indicates no match, see
below.

Lengths
A vector of one or more lengths, corresponding to each
value in Offset. ¯1 indicates no match, see below.

Names

A vector of one or more character vectors corresponding to
each of the values in Offsets, specifying the names given to
the subpatterns within Pattern. The first entry (corresponding
to the match) and all subpatterns with no name are included
as length zero character vectors.

ReplaceMode
A Boolean indicating whether the function was called by
⎕R (value 1) or ⎕S (value 0).

TextOnly
A Boolean indicating whether the return value from the
function must be a character vector (value 1) or any value
(value 0).

Chapter 4: System Functions 525

The return value from the function is used as follows:

With ⎕R the function must return a character vector. The contents of this vector are
used to replace the matching text.

With ⎕S the function may return no value. If it does return a value:

l When output is being directed to a stream it must be a character vector.
l Otherwise, it may be any value. The overall result of the derived function is
the catenation of the enclosure of each returned value into a single vector.

The passed namespace exists over the lifetime of ⎕R or ⎕S; the function may
therefore preserve state by creating variables in the namespace.

The function may itself call ⎕R or ⎕S.

There may be only one transformation function, regardless of the number of search
patterns.

The locations of the match within Block and subpatterns within Match are given as
offsets rather than positions, i.e. the values are the number of characters preceding the
data, and are not affected by the Index Origin.

The value of ¯1may appear in both the Offsets and Fields items (in corresponding
positions). They indicate that the subpattern to which they refer did not appear in the
match at all.

Example
{}('(A)|(B)'⎕R{⎕←⍵.(Offsets Lengths)⋄'x'})'ABC'

0 0 1 1
1 ¯1 1 1 ¯1 1

The pattern has two subpatterns - (A) and (B). Therefore Offsets and Lengths would
be expected to have three elements each - one for the entire match, one for the first
subpattern and one for the second subpattern. But these subpatterns have a | between
themwhich means they are alternates - only one can match.

When ABC is searched the first match is the A in the first subpattern. The second
subpattern does not feature. Offsets is 0 0 and Lengths is 1 1: the entire pattern
matched from offset 0 length 1 and the first subpattern also matched from offset 0
length 1. The second subpattern did not feature in the match.

Note that ¯1 is only used as a "filler" when there are higher-numbered subpatterns
that did match.

Chapter 4: System Functions 526

The second match is the B in the second subpattern. Offsets is 1 ¯1 1 and Lengths
is 1 ¯1 1: the entire pattern matched from offset 1 length 1 and the second
subpattern also matched from offset 1 length 1. The first subpattern did not feature in
the match and this is indicated by the ¯1s. There has to be something between the
offset/length for the entire pattern and the second subpattern.

Options
Options are specified using the Variant operator. The Principal option is IC.

Default values are highlighted thus.

IC Option
When set, case is ignored in searches.

1 Matches are not case sensitive.

0 Matches are case sensitive.

Example:

('[AEIOU]' ⎕R 'X' ⍠ 'IC' 1) 'ABCDE abcde'
XBCDX XbcdX

('[AEIOU]' ⎕R 'X' ⍠ 1)'ABCDE abcde'
XBCDX XbcdX

Chapter 4: System Functions 527

Mode Option
Specifies whether the input document is interpreted in linemode, documentmode or
mixedmode.

L

When line mode is set, the input document is split into separate
lines (discarding the line ending characters themselves), and
each line is processed separately. This means that the ML
option applies per line, and the '̂ ' and '$' anchors match the
start and end respectively of each line. Because the document is
split, searches can never match across multiple lines, nor can
searches for line ending characters ever succeed. Setting line
mode can result in significantly reduced memory requirements
compared with the other modes.

D

When document mode is set, the entire input document is
processed as a single block. The ML option applies to this
entire block, and the '̂ ' and '$' anchors match the start and end
respectively of the block - not the lines within it. Searches can
match across lines, and can match line ending characters.

M

When mixed mode is set, the '̂ ' and '$' anchors match the start
and end respectively of each line, as if line mode is set, but in
all other respects behaviour is as if document mode is set - the
entire input document is processed in a single block.

Examples:
('$' ⎕R '[Endline]' ⍠ 'Mode' 'L') 'ABC' 'DEF'

ABC[Endline] DEF[Endline]

('$' ⎕R '[Endline]' ⍠ 'Mode' 'D') 'ABC' 'DEF'
ABC DEF[Endline]

('$' ⎕R '[Endline]' ⍠ 'Mode' 'M') 'ABC' 'DEF'
ABC[Endline] DEF[Endline]

Chapter 4: System Functions 528

DotAll Option
Specifies whether the dot ('.') character in search patterns matches line ending
characters.

0 The '.' character in search patterns matches most characters, but
not line endings.

1 The '.' character in search patterns matches all characters.

This option is invalid in line mode, because line endings are stripped from the input
document.

Example:
('.' ⎕R 'X' ⍠'Mode' 'D') 'ABC' 'DEF'

XXX XXX
('.' ⎕R 'X' ⍠('Mode' 'D')('DotAll' 1)) 'ABC' 'DEF'

XXXXXXXX

EOL Option
Sets the line ending character which is implicitly present between character vectors,
when the input document is a vector of character vectors.

CR Carriage Return (U+000D)

LF Line Feed (U+000A)

CRLF Carriage Return followed by Line Feed

VT Vertical Tab (U+000B)

NEL New Line (U+0085)

FF Form Feed (U+000C)

LS Line Separator (U+2028)

PS Paragraph Separator (U+2029)

In the Classic Edition, setting a value which is not in ⎕AVUmay result in a
TRANSLATION ERROR.

Example:
('\n' ⎕R'X' ⍠('Mode' 'D')('EOL' 'LF')) 'ABC' 'DEF'

ABCXDEF

Here, the implied line ending between 'ABC' and 'DEF' is '\n', not the default '\r\n'.

Chapter 4: System Functions 529

NEOL Option
Specifies whether explicit line ending sequences in the input document are
normalised by replacing themwith the character specified using the EOL option.

0 Line endings are not normalised.

1 Line endings are normalised.

Example:
a←'ABC',(1↑2↓⎕AV),'DEF',(1↑3↓⎕AV),'GHI'
('\n'⎕S 0 ⍠ 'Mode' 'D' ⍠ 'NEOL' 1 ⍠ 'EOL' 'LF') a

3 7

'\n' has matched both explicit line ending characters in the input, even though they
are different.

ML Option
Sets a limit to the number of processed pattern matches per line (line mode) or
document (document mode and mixed mode).

Positive value n Sets the limit to the first n matches.

0 Sets no limit.

Negative value
¯n Sets the limit to exactly the nth match.

Examples:
('.' ⎕R 'x' ⍠ 'ML' 2) 'ABC' 'DEF'

xxC xxF
('.' ⎕R 'x' ⍠ 'ML' ¯2) 'ABC' 'DEF'

AxC DxF
('.' ⎕R 'x' ⍠ 'ML' ¯4 ⍠ 'Mode' 'D') 'ABC' 'DEF'

ABC xEF

Chapter 4: System Functions 530

Greedy Option
Controls whether patterns are "greedy" (and match the maximum input possible) or
are not (and match the minimum). Within the pattern itself it is possible to specify
greediness for individual elements of the pattern; this option sets the default.

1 Greedy by default.

0 Not greedy by default.

Examples:
('[A-Z].*[0-9]' ⎕R 'X' ⍠ 'Greedy' 1)'ABC123 DEF456'

X
('[A-Z].*[0-9]' ⎕R 'X' ⍠ 'Greedy' 0)'ABC123 DEF456'

X23 X56

OM Option
Specifies whether matches may overlap.

1
Searching continues for all patterns and then from the character
following the start of the match, thus permitting overlapping
matches.

0 Searching continues from the character following the end of the
match.

This option may only be used with ⎕S. With ⎕R searching always continues from the
character following the end of the match (the characters following the start of the
match will have been changed).

Examples:
('[0-9]+' ⎕S '\0' ⍠ 'OM' 0) 'A 1234 5678 B'

1234 5678
('[0-9]+' ⎕S '\0' ⍠ 'OM' 1) 'A 1234 5678 B'

1234 234 34 4 5678 678 78 8

Chapter 4: System Functions 531

InEnc Option
This option specifies the encoding of the input stream when it cannot be determined
automatically. It is either:

l a character vector that specifies the file-encoding as shown in the table
below.

l a 256-element numeric vector that maps each possible byte value (0-255) to
a Unicode code point (1st element = Unicode code point corresponding to
byte value 0, and so on). ¯1 indicates that the corresponding byte value is
not mapped to any character. Apart from ¯1, no value may appear in the
table more than once.

When the stream is read from its start, and the start of the stream contains a
recognised Byte OrderMark (BOM), the encoding is taken as that specified by the
BOM and this option is ignored. Otherwise, the encoding is assumed to be as
specified by this option.

UTF-8
The stream is processed as UTF-8 data. Note that ASCII is a
subset of UTF-8, so this default is also suitable for ASCII
data.

UTF-16
The stream is processed as UTF16 little-endian data on
little-ended systems, or as UTF16 big-endian data on big-
endian systems.

UTF-16LE The stream is processed as UTF16 little-endian data.

UTF-16BE The stream is processed as UTF16 big-endian data.

UTF-32
The stream is processed as UTF32 little-endian data on
little-ended systems, or as UTF32 big-endian data on big-
endian systems.

UTF-32LE The stream is processed as UTF32 little-endian data.

UTF-32BE The stream is processed as UTF32 big-endian data.

ASCII
The stream is processed as ASCII data. If the stream
contains any characters outside of the ASCII range then an
error is produced.

Windows-1252 The stream is processed as Windows-1252 (ANSI) data.

ANSI Same as Windows-1252

For compatibility with theOutEnc option, the above UTF formats may be qualified
with -BOM (e.g. UTF-8-BOM) or -NOBOM. For input streams, the qualified and
unqualified options are equivalent.

Chapter 4: System Functions 532

OutEnc Option
When the output is written to a stream, this option specifies how the data is to be
encoded. It is either:

l a character vector that specifies the file-encoding as shown in the table
below.

l a 256-element numeric vector that maps each possible byte value (0-255) to
a Unicode code point (1st element = Unicode code point corresponding to
byte value 0, and so on). ¯1 indicates that the corresponding byte value is
not mapped to any character. Apart from ¯1, no value may appear in the
table more than once.

Implied If input came from a stream then the encoding format is the
same as the input stream, otherwise UTF-8

UTF-8 The data is written in UTF-8 format.

UTF-16
The data is written in UTF16 little-endian format on little-
ended systems, or in UTF16 big-endian format on big-
endian systems.

UTF-16LE The data is written in UTF-16 little-endian format.

UTF-16BE The data is written in UTF-16 big-endian format.

UTF-32
The data is written in UTF32 little-endian format on little-
ended systems, or in UTF32 big-endian format on big-
endian systems.

UTF-32LE The data is written in UTF-32 little-endian format.

UTF-32BE The data is written in UTF-32 big-endian format.

ASCII The data is written in ASCII format.

Windows-1252 The data is written in Windows-1252 (ANSI) format.

ANSI Same as Windows-1252

The above UTF formats may be qualified with -BOM (e.g. UTF-8-BOM) to specify
that a Byte OrderMark should be written at the start of the stream or, -NOBOM that
it should not. For files, this is ignored if the file already contains any data. If the -
BOM or -NOBOM suffix is omitted, UTF-8 defaults to UTF-8-NOBOM, while the
other UTF formats default to -BOM.

Enc Option
This option sets both InEnc and OutEnc simultaneously, with the same given value.
Any option value accepted by those options except Implied may be given.

Chapter 4: System Functions 533

ResultText Option
For ⎕R, this option determines the format of the result.

Implied The output will either be a character vector or a vector of
character vectors, dependent on the input document type

Simple
The output will be a character vector. Any and all line
endings in the output will be represented by line ending
characters within the character vector.

Nested
The output will be a vector of character vectors. Any and all
line endings in the output document will be implied at the end
of each character vector.

This option may only be used with ⎕R.

Examples:

⎕UCS ¨ ('A' ⎕R 'x') 'AB' 'CD'
120 66 67 68

⎕UCS ('A' ⎕R 'x' ⍠ 'ResultText' 'Simple') 'AB' 'CD'
120 66 13 10 67 68

UCP Option
This affects the way PCRE that processes \B, \b, \D, \d, \S, \s, \W, \w, and some of the
POSIX character classes.

1 Unicode properties are used to classify characters.

0 Only ASCII characters are recognized.

Implementation Note: this option is implemented by setting or not setting the
PCRE_UCP option when calling pcre_compile(). More information can be found in
the PCRE documentation.

Examples
By default, the character ø (which is not an ASCII character) is considered to be a
"non-word" character, so:

('\w'⎕S'\0')'Bjørn' ⍝ identify "word" characters
B j r n

('\W'⎕S'\0')'Bjørn' ⍝ non-word" characters
ø

When UCP is set to 1, Unicode characters are matched as "word" characters (\w) too.

('\w'⎕S'\0' ⍠'UCP' 1)'Bjørn'
B j ø r n

Chapter 4: System Functions 534

Line, document and mixed modes
TheMode setting determines how the input document is packaged as a block and
passed to the search engine. In line mode each line is processed separately; in
document mode and mixed mode the entire document is presented to the search
engine. This affects both the semantics of the search expression, and memory usage.

Semantic differences
l The ML option applies per block of data.
l In line mode, search patterns cannot be constructed to span multiple lines.
Specifically, patterns that include line ending characters (such as '\r') will
never match because the line endings are never presented to the search
engine.

l By default the search pattern metacharacters '̂ ' and '$' match the start and
end of the block of data. In line mode this is always the start and end of
each line. In document mode this is the start and end of the document. In
mixed mode the behaviour of '̂ ' and '$' are amended by setting the PCRE
option 'MULTILINE' so that they match the start and end of each line
within the document.

Memory usage differences
Blocks of data passed to the search engine are processed and stored in the workspace.
Processing the input document in line mode limits the total memory requirements; in
particular this means that large streams can be processed without holding all the data
in the workspace at the same time.

Technical Considerations
⎕R and ⎕S utilise the open-source regular-expression search engine PCRE, which is
built into the Dyalog software and distributed according to the PCRE licence which
is published separately.

Before data is passed to PCRE it is converted to UTF-8 format. This converted data is
buffered in the workspace; processing large documents may have significant memory
requirements. In line mode, the data is broken into individual lines and each is
processed separately, potentially reducing memory demands.

It is possible to save a workspace with an active ⎕R or ⎕S on the stack and execution
can continue when the workspace is reloaded with the same interpreter version. Later
versions of the interpreter may not remain compatible and may signal a DOMAIN
ERROR with explanatory message in the status window if it is unable to continue
execution.

Chapter 4: System Functions 535

PCRE has a buffer length limit of 231 bytes (2GB). UTF-8 encodes each character
using between 1 and 6 bytes (typically 1 or 3). In the very worst case, where every
character is encoded in 6 bytes, the maximum block length which can be searched
would be 357,913,940 characters.

Further Examples
Several of the examples use the following vector as the input document:

text
To be or not to be– that is the question:
Whether 'tis nobler in the mind to suffer
The slings and arrows of outrageous fortune,
Or to take arms against a sea of troubles

Replace all upper and lower-case vowels by 'X':
('[aeiou]' ⎕R 'X' ⍠ 'IC' 1) text

TX bX Xr nXt tX bX– thXt Xs thX qXXstXXn:
WhXthXr 'tXs nXblXr Xn thX mXnd tX sXffXr
ThX slXngs Xnd XrrXws Xf XXtrXgXXXs fXrtXnX,
Xr tX tXkX Xrms XgXXnst X sXX Xf trXXblXs

Replace only the second vowel on each line by '\VOWEL\':
('[aeiou]' ⎕R '\\VOWEL\\'⍠('IC' 1)('ML' ¯2)) text

To b\VOWEL\ or not to be– that is the question:
Wheth\VOWEL\r 'tis nobler in the mind to suffer
The sl\VOWEL\ngs and arrows of outrageous fortune,
Or t\VOWEL\ take arms against a sea of troubles

Case fold each word:
('(?<first>\w)(?<remainder>\w*)' ⎕R

'\u<first>\l<remainder>') text
To Be Or Not To Be– That Is The Question:
Whether 'Tis Nobler In The Mind To Suffer
The Slings And Arrows Of Outrageous Fortune,
Or To Take Arms Against A Sea Of Troubles

Extract only the lines with characters 'or' (in upper or lower case) on them:
↑('or' ⎕S '%' ⍠ ('IC' 1)('ML' 1)) text

To be or not to be– that is the question:
The slings and arrows of outrageous fortune,
Or to take arms against a sea of troubles

Chapter 4: System Functions 536

Identify which lines contain the word 'or' (in upper or lower case) on them:
('\bor\b'⎕S 2⍠('IC' 1)('ML' 1))text

0 3

Note the difference between the characters 'or' (which appear in 'fortune') and the
word 'or'.

Place every non-space sequence of characters in brackets:
('[^\s]+' ⎕R '(&)') 'To be or not to be, that is

the question'
(To) (be) (or) (not) (to) (be,) (that) (is) (the)
(question)

Replace all sequences of one or more spaces by newline. Note that the effect of
this is dependent on the input format:
Character vector input results in a single character vector output with embedded
newlines:

]display ('\s+' ⎕R '\r') 'To be or not to be, that
is the question'
┌→───────┐
│To │
│be │
│or │
│not │
│to │
│be, │
│that │
│is │
│the │
│question│
└────────┘

A vector of two character vectors as input results in a vector of 10 character vectors
output:

]display ('\s+' ⎕R '\r') 'To be or not to be,' 'that is the
question'
┌→───┐
│ ┌→─┐ ┌→─┐ ┌→─┐ ┌→──┐ ┌→─┐ ┌→──┐ ┌→───┐ ┌→─┐ ┌→──┐ ┌→───────┐ │
│ │To│ │be│ │or│ │not│ │to│ │be,│ │that│ │is│ │the│ │question│ │
│ └──┘ └──┘ └──┘ └───┘ └──┘ └───┘ └────┘ └──┘ └───┘ └────────┘ │
└∊───┘

Chapter 4: System Functions 537

Change numerals to their expanded names, using a function:
∇r←f a;n

[1] n←'zero' 'one' 'two' 'three' 'four'
[2] n,←'five' 'six' 'seven' 'eight' 'nine'
[3] r←' ',⊃(⍎a.Match)↓n

∇
verbose←('[0-9]' ⎕R f)
verbose ⍕27×56×87

one three one five four four

Swap 'red' and 'blue':
('red' 'blue' ⎕R 'blue' 'red') 'red hat blue coat'

blue hat red coat

Convert a comma separated values (CSV) file so that
l dates in the first field are converted from European format to ISO, and
l currency values are converted from Deutsche Marks (DEM) to Euros (DEM
1.95583 to €1).

The currency conversion requires the use of a function. Note the nested use of ⎕R.

Input file:

01/03/1980,Widgets,DEM 10.20
02/04/1980,Bolts,DEM 61.75
17/06/1980,Nuts; special rate DEM 17.00,DEM 17.00
18/07/1980,Hammer,DEM 1.25

Output file:

1980-03-01,Widgets,€ 5.21
1980-04-02,Bolts,€ 31.57
1980-06-17,Nuts; special rate DEM 17.00,€ 8.69
1980-07-18,Hammer,€ 0.63

Chapter 4: System Functions 538

∇ ret←f a;d;m;y;v
[1] ⎕IO←0
[2] :Select a.PatternNum
[3] :Case 0
[4] d m y←{a.Match[a.Offsets[⍵+1]+⍳a.Lengths
[⍵+1]]}¨⍳3
[5] ret←y,'-',m,'-',d,','
[6] :Else
[7] v←⍎a.Block[a.Offsets[1]+⍳a.Lengths[1]]
[8] v÷←1.95583
[9] ret←',€ ',('(\d+\.\d\d).*'⎕R'\1')⍕v
[10] :EndSelect

∇

in ← 'x.csv' ⎕NTIE 0
out ← 'new.csv' ⎕NCREATE 0
dateptn←'(\d{2})/(\d{2})/(\d{4}),'
valptn←',DEM ([0-9.]+)'
out (dateptn valptn ⎕R f) in
⎕nuntie¨in out

Create a simple profanity filter. For the list of objectionable words:
profanity←'bleeding' 'heck'

first construct a pattern which will match the words:

ptn←(('^' '$' '\r\n') ⎕R '\\b(' ')\\b' '|'
⎕OPT 'Mode' 'D') profanity

ptn
\b(bleeding|heck)\b

then a function that uses this pattern:

sanitise←ptn ⎕R '****' ⎕opt 1
sanitise '"Heck", I said'

"****", I said

Replace the characters 'or' with '\u0' without having to escape the backslash:
Escaping transformation strings can be a daunting task. To avoid doing so, one can
simply enclose the string in braces. This is not a special feature, but just a
consequence of how transformation functions are used.

('to' ⎕R {'\u0'})text
To be or not \u0 be– that is the question:
Whether 'tis nobler in the mind \u0 suffer
The slings and arrows of outrageous fortune,
Or \u0 take arms against a sea of troubles

Chapter 4: System Functions 539

Cross References R←⎕REFS Y

Ymust be a simple character scalar or vector, identifying the name of a function or
operator, or the object representation form of a function or operator (see Object
Representation on page 501). R is a simple character matrix, with one name per row,
of identified names in the function or operator in Y excluding distinguished names of
system constants, variables or functions.

Example
⎕VR'OPTIONS'

∇ OPTIONS;OPTS;INP
[1] ⍝ REQUESTS AND EXECUTES AN OPTION
[2] OPTS ←'INPUT' 'REPORT' 'END'
[3] IN:INP←ASK'OPTION:'
[4] →EX⍴⍨(⊂INP)∊OPTS
[5] 'INVALID OPTION. SELECT FROM',OPTS ⋄ →IN
[6] EX:→EX+OPTS⍳⊂INP
[7] INPUT ⋄ →IN
[8] REPORT ⋄ →IN
[9] END:

∇

⎕REFS'OPTIONS'
ASK
END
EX
IN
INP
INPUT
OPTIONS
OPTS
REPORT

If Y is locked or is an External Function, R contains its name only. For example:

⎕LOCK 'OPTIONS' ⋄ ⎕REFS 'OPTIONS'
OPTIONS

If Y is the name of a primitive, external or derived function, R is an empty matrix with
shape 0 0.

Chapter 4: System Functions 540

Random Link ⎕RL

⎕RL is a 2-element vector. Its first element contains the base or random number seed
and its second element is an integer that identifies the random number generator that
is currently in use. Together these items define how the system generates random
numbers using Roll and Deal.

In a clear ws ⎕RL is (⍬ 1).

Random Number Seed
The facility to set the seed to a specific value provides the means to generate a
repeatable sequence of random numbers, such as might be required by certain types
of simulation modelling. This capability is not provided by RNG2.

If the seed is set to 0, the seed is set randomly but may be retrieved and subsequently
re-assigned to create a repeatable sequence.

If the seed is set to ⍬, Dyalog is able to take advantage of certain optimisations which
deliver maximum performance. In this case, the actual seed in use is intentionally
hidden and ⎕RL[1] always reports ⍬, regardless of the RandomNumber Generator
in use.

Random Number Generators
The 3 random number generators are listed in the table below. The 4th column of the
table contains the values of seeds that may be assigned to them.

Id Name Algorithm Valid Seed Values

0 RNG0 Lehmer linear
congruential generator.

0, ⍬, or an integer in the range 1 to
¯2+2*31

1 RNG1 Mersenne Twister.
0, ⍬, an integer in the range 1 to
¯2+2*31 or a 625-element integer
vector

2 RNG2
Operating System
random number
generator.

⍬

Note that assigning an invalid value to the seed will cause DOMAIN ERROR.

Chapter 4: System Functions 541

The default random number generator in a CLEAR WS is 1 (Mersenne Twister). This
algorithm RNG1 produces 64-bit values with good distribution.

The Lehmer linear congruential generator RNG0 was the only random number
generator provided in versions of Dyalog APL prior to Version 13.1. The
implementation of this algorithm has several limitations including limited value
range (2*31), short period and non-uniform distribution (some values may appear
more frequently than others). It is retained for backwards compatibility.

UnderWindows, the Operating System random number generator algorithm RNG2
uses the CryptGenRandom() function. Under UNIX/Linux it uses
/dev/urandom.

Random Number Sequences
Random number sequences may be predictable or not and repeatable or not. A
predictable and repeatable sequence is obtained by starting with the same specific
value for the seed. A non-predictable sequence is obtained by starting with a seed
which is itself chosen at random, but such a sequence is repeatable if the value of the
seed (chosen at random) is visible. A non-predictable and non-repeatable sequence of
random numbers is obtained where the initial seed is chosen completely at random
and is unknown.

Using RNG0 or RNG1:

l To obtain an entirely predictable random sequence, set the seed to a non-
zero value

l To obtain a non-predictable, but repeatable sequence, set the seed to 0
l To obtain a non-predictable, non-repeatable series of random numbers, set
the seed to ⍬

RNG2 does not support a user modifiable random number seed, so when using this
scheme, it is not possible to obtain a repeatable random number series and the seed
must always be ⍬.

Chapter 4: System Functions 542

Implementation Note:
⎕RL does not behave quite like a regular 2-element variable; it has its own rules
relating to assignment and reference.

Reference
⎕RL returns a 2-element vector whose second element identifies the scheme in use
(0, 1 or 2).

If ⎕RL[1] is set to ⍬, ⎕RL[1]always reports ⍬.

Otherwise if the seed ⎕RL[1] is set to a value other than ⍬:

l using RNG0, ⎕RL[1] is an integer which represents the seed for the next
random number in the sequence.

l using RNG1, the system internally retains a block of 312 64-bit numbers
which are used one by one to generate the results of roll and deal. When the
first block of 312 have been used up, the system generates a second block.
In this case, ⎕RL[1] is an integer vector of 32-bit numbers of length 625
(the first is an index into the block of 312) which represents the internal
state of the random number generator. This means that, as with RNG0, you
may save the value of ⎕RL in a variable and reassign it later.

l Using RNG2, the seed is purely internal and ⎕RL[1] is always zilde.

Assignment
⎕RLmay only be assigned in its entirety. Indexed and selective assignment may not
be used to assign values to individual elements.

To preserve compatibility with Versions of Dyalog prior to Version 15.0 (in which
⎕RL specifies just the seed) if the value assigned to ⎕RL represents a valid seed for
the random number generator in use, it is taken to be the new seed. Otherwise, the
value assigned to ⎕RLmust be a 2-element vector, whose first item is the seed and
whose second item is 0, 1 or 2 and specifies the random number generator to be used
subsequently.

Chapter 4: System Functions 543

Examples (specific seeds for repeatable sequences)
)CLEAR

clear ws
⎕RL←16807
10?10

4 1 6 5 2 9 7 10 3 8
5↑⊃⎕RL

10 0 16807 1819658750 ¯355441828
X←?1000⍴1000
5↑⊃⎕RL

100 ¯465541037 ¯1790786136 ¯205462449 996695303

⎕RL←16807
10?10

4 1 6 5 2 9 7 10 3 8
Y←?1000⍴1000
X≡Y

1
5↑⊃⎕RL

100 ¯465541037 ¯1790786136 ¯205462449 996695303

⎕RL←16807 0 ⍝ Select RNG0
⎕RL

16807 0
?9 9 9

2 7 5
?9

7
⎕RL

984943658 0

⎕RL←16807
?9 9 9

2 7 5
?9

7
⎕RL

984943658 0

⎕RL←16807 1 ⍝ Select RNG1
5↑⊃⎕RL

100 ¯465541037 ¯1790786136 ¯205462449 996695303

Chapter 4: System Functions 544

Examples (0 seed)
When you set the seed to 0, a random seed is created for you:

⎕RL←0 0
⎕RL

865618822 0
⎕RL←0
⎕RL

1100783275 0

Setting the seed to 0 gives you a new, unpredictable random sequence yet it is
repeatable because you can retrieve (and subsequently re-use) the actual seed after
you set it:

?10⍴100
14 22 18 30 42 22 71 32 32 12

⎕RL←1100783275
?10⍴100

14 22 18 30 42 22 71 32 32 12

Example (zilde)
When you set the seed to zilde, you get the same random initialisation as setting it to
0 but you can't retrieve the actual value of the seed. When it is set to ⍬ it is
subsequently reported as ⍬ and the internal value of the seed is hidden.

⎕RL←⍬
⎕RL

┌┬─┐
││0│
└┴─┘

Chapter 4: System Functions 545

Space Indicator R←⎕RSI

R is a vector of refs to the spaces fromwhich functions in the state indicator were
called (⍴⎕RSI←→⍴⎕NSI←→⍴⎕SI).

⎕RSI and ⎕NSI are identical except that ⎕RSI returns refs to the spaces whereas
⎕NSI returns their names. Put another way: ⎕NSI←→⍕¨⎕RSI.

Note that ⎕RSI returns refs to the spaces from which functions were called not those
in which they are currently running.

Example
)OBJECTS

xx yy

⎕VR 'yy.foo'
∇ r←foo

[1] r←⎕SE.goo
∇
⎕VR'⎕SE.goo'

∇ r←goo
[1] r←⎕SI,[1.5]⎕RSI

∇

)CS xx
#.xx

calling←#.yy.foo
]display calling

┌→───────────┐
↓ ┌→──┐ │
│ │goo│ #.yy │
│ └───┘ │
│ ┌→──┐ │
│ │foo│ #.xx │
│ └───┘ │
└∊───────────┘

Chapter 4: System Functions 546

Response Time Limit ⎕RTL

A non-zero value in ⎕RTL places a time limit, in seconds, for input requested via ⍞,
⎕ARBIN, and ⎕SR. ⎕RTLmay be assigned any integer in the range 0 to 32767. The
value in a clear workspace is 0.

Example
⎕RTL←5 ⋄ ⍞←'FUEL QUANTITY?' ⋄ R←⍞

FUEL QUANTITY?
TIMEOUT

⎕RTL←5 ⋄ ⍞←'FUEL QUANTITY?' ⋄ R←⍞

Search R←{X}(A ⎕S B) Y

See Replace on page 517.

Chapter 4: System Functions 547

Save Workspace {R}←{X}⎕SAVE Y

Ymust be a simple character scalar or vector that identifies a full or relative path
name to the file in which the workspace will be written.

Unless the path specified by Y is a full pathname, it is taken to be relative to the
current working directory which may be obtained by the expression: ⊃1 ⎕NPARTS
''.

See Programming Reference Guide: Workspaces for the rules for specifying a
workspace name.

The active workspace is saved with the file name specified by Y, whether or not a
workspace file of that name already exists.

A DOMAIN ERROR is reported if the name in Y :

l is not a valid workspace name
l is not a valid file name
l refers to an unauthorised directory
l specifies an existing file that does not already contain a Dyalog workspace
or session file

The shy result R is a simple Boolean scalar 1. However, when the workspace is
subsequently loaded using ⎕LOAD and execution restarts, the result is 0, as described
below.

The optional left argument X is either 0 or 1. If X is omitted or 1, the saved version of
the workspace has execution suspended at the point of exit from the ⎕SAVE function.
If the saved workspace is subsequently loaded by ⎕LOAD, execution is resumed, and
the value 0 is returned if the result is used or assigned, or otherwise the result is
suppressed. In this case, the latent expression value (⎕LX) is ignored.

If X is 0, the workspace is saved without any state indicator in effect. The effect is the
same as if you first executed)RESET and then)SAVE. In this case, when the
workspace is subsequently loaded, the value of the latent expression (⎕LX) is
honoured if applicable.

As is the case for)SAVE (see Save Workspace on page 649), monadic ⎕SAVE will
fail and issue DOMAIN ERROR if any threads (other than the root thread 0) are
running or if there are any Edit or Trace windows open. However, neither of these
restrictions apply if the left argument X is 0.

Note that the values of all system variables (including ⎕SM) and all GUI objects are
saved.

Chapter 4: System Functions 548

Example
(⊃'SAVED' 'ACTIVE' [⎕IO+⎕SAVE'TEMP']),' WS'

ACTIVE WS
⎕LOAD 'TEMP'

SAVED WS

Additional operations may be performed before saving the workspace. For further
information, see Set Workspace Save Options on page 237.

Screen Dimensions R←⎕SD

⎕SD is a 2-element integer vector containing the number of rows and columns on the
screen, or in the USER window.

For asynchronous terminals under UNIX, the screen size is taken from the terminal
database terminfo or termcap.

In window implementations of Dyalog APL, ⎕SD reports the current size (in
characters) of the USER window or the current size of the SM object, whichever is
appropriate.

Session Namespace ⎕SE

⎕SE is a system namespace. Its GUI components (MenuBar, ToolBar, and so forth)
define the appearance and behaviour of the APL Session window and may be
customised to suit individual requirements.

⎕SE is maintained separately from the active workspace and is not affected by
)LOAD or)CLEAR. It is therefore useful for containing utility functions. The
contents of ⎕SEmay be saved in and loaded from a .DSE file.

See Dyalog for Microsoft Windows UI Guide for further details.

Chapter 4: System Functions 549

Execute (UNIX) Command {R}←⎕SH Y

⎕SH executes a UNIX shell or a Windows Command Processor. ⎕SH is a synonym
of ⎕CMD. Either function may be used in either environment (UNIX orWindows)
with exactly the same effect. ⎕SH is probably more natural for the UNIX user. This
section describes the behaviour of ⎕SH and ⎕CMD under UNIX. See Execute
Windows Command on page 295 for a discussion of the behaviour of these system
functions underWindows.

The system commands)SH and)CMD provide similar facilities. For further
information, see Execute (UNIX) Command on page 651 and Windows Command
Processor on page 632.

Ymust be a simple character scalar or vector representing a UNIX shell command. R
is a nested vector of character vectors.

Ymay be any acceptable UNIX command. If the command does not produce any
output, R is 0⍴⊂'' but the result is suppressed if not explicitly used or assigned. If
the command has a non-zero exit code, then APL will signal a DOMAIN ERROR. If
the command returns a result and has a zero exit code, then each element of R will be
a line from the standard output (stdout) of the command. Output from standard error
(stderr) is not captured unless redirected to stdout.

Examples
⎕SH'ls'

FILES WS temp

⎕SH 'rm WS/TEST'

⎕SH 'grep bin /etc/passwd ; exit 0'
bin:!:2:2::/bin:

⎕SH 'apl MYWS <inputfile >out1 2>out2 &'

Note:
This function is disabled and instead generates a DOMAIN ERROR if the RIDE_
SPAWNED parameter is non-zero. This is designed to prevent it being invoked from
a RIDE session which does not support this type of user interface. For further details,
see the RIDE User Guide.

Chapter 4: System Functions 550

Start UNIX Auxiliary Processor X ⎕SH Y

Used dyadically, ⎕SH starts an Auxiliary Processor. The effect, as far as the APL user
is concerned, is identical under both Windows and UNIX although there are
differences in the method of implementation. ⎕SH is a synonym of ⎕CMD Either
function may be used in either environment (UNIX orWindows) with exactly the
same effect. ⎕SH is probably more natural for the UNIX user. This section describes
the behaviour of ⎕SH and ⎕CMD under UNIX. See Start Windows Auxiliary
Processor on page 299 for a discussion of the behaviour of these system functions
underWindows.

Xmust be a simple character vector. Ymay be a simple character scalar or vector, or a
nested character vector.

⎕SH loads the Auxiliary Processor from the file named by X using a search-path
defined by the environment variable WSPATH.

The shy result R is the process id of the Auxiliary Processor task.

The effect of starting an AP is that one or more external functions are defined in the
workspace. These appear as locked functions and may be used in exactly the same
way as regular defined functions.

When an external function is used in an expression, the argument(s) (if any) are piped
to the AP for processing. If the function returns a result, APL halts while the AP is
processing and waits for the result. If not it continues processing in parallel.

The syntax of dyadic ⎕SH is similar to the UNIX execl(2) system call, where
'taskname' is the name of the auxiliary processor to be executed and arg0 through
argn are the parameters of the calling line to be passed to the task, viz.

'taskname' ⎕SH 'arg0' 'arg1' ... 'argn'

See Dyalog Programming Reference Guide for further information.

Examples
'xutils' ⎕SH 'xutils' 'ss' 'dbr'
'/bin/sh' ⎕SH 'sh' '-c' 'adb test'

Although it is possible for users to create their own APs, Dyalog recommends
creating shared libraries/DLLs instead.

Chapter 4: System Functions 551

Shadow Name {R}←⎕SHADOW Y

Ymust be a simple character scalar, vector or matrix or a vector of nested scalar of
character vectors identifying one or more APL names. For a simple vector Y, names
are separated by one or more blanks. For a matrix Y, each row is taken to be a single
name.

Each valid name in Y is shadowed in the most recently invoked defined function or
operator, as though it were included in the list of local names in the function or
operator header. The class of the name becomes 0 (undefined). The name ceases to
be shadowed when execution of the shadowing function or operator is completed.
Shadow has no effect when the state indicator is empty.

The shy result R is a Boolean vector of 1s with the same length as the number of
names in Y.

If a name is ill-formed, or if it is the name of a system constant or system function,
DOMAIN ERROR is reported.

If the name of a top-level GUI object is shadowed, it is made inactive.

Example
⎕VR'RUN'

∇ NAME RUN FN
[1] ⍝ Runs function named <NAME> defined
[2] ⍝ from representation form <FN>
[3] ⎕SHADOW NAME
[4] ⍎⎕FX FN

∇

0 ⎕STOP 'RUN' ⍝ stop prior RUN exiting

'FOO' RUN 'R←FOO' 'R←10'
10

RUN[0]

)SINL
#.RUN[0]* FOO FN NAME

→⎕LC

FOO
VALUE ERROR

FOO
^

Chapter 4: System Functions 552

State Indicator R←⎕SI

R is a nested vector of vectors giving the names of the functions or operators in the
execution stack.

Example
)SI

#.PLUS[2]*
.
#.MATDIV[4]
#.FOO[1]*
⍎

⎕SI
PLUS MATDIV FOO

(⍴⎕LC)=⍴⎕SI
1

If execution stops in a callback function, ⎕DQ will appear on the stack, and may
occur more than once

)SI
#.ERRFN[7]*
⎕DQ
#.CALC
⎕DQ
#.MAIN

To edit the function on the top of the stack:

⎕ED ⊃⎕SI

The name of the function which called this one:

⊃1↓⎕SI

To check if the function ∆N is pendent:

((⊂∆N)∊1↓⎕SI)/'Warning : ',∆N,' is pendent'

See also Extended State Indicator on page 625.

Chapter 4: System Functions 553

Signal Event {R}←{X}⎕SIGNAL Y

Ymust be a scalar or vector.

If Y is a an empty vector nothing is signalled.

If Y is a vector of more than one element, all but the first element are ignored.

R has the same value as Y.

Y=0 is a special form of ⎕SIGNAL, the side effect of which is to reset the values of
certain system constants. It is described further down this section.

If the first element of Y is a simple integer in the range 1-999 it is taken to be an event
number. X is an optional text message. If present, Xmust be a simple character scalar
or vector, or an object reference. If X is omitted or is empty, the standard event
message for the corresponding event number is assumed. See Programming
Reference Guide: APL Error Messages. If there is no standard message, a message of
the form ERROR NUMBER n is composed, where n is the event number in Y. Values
outside the range 0 or 1-999 will result in a DOMAIN ERROR.

If the first element of Y is a 2 column matrix or a vector of 2 element vectors of
name/values pairs, then it is considered to be a set of values to be used to override the
default values in a new instance of ⎕DMX. Any other value for the first element of Y
will result in a DOMAIN ERROR.

The names in the error specification must all appear in a system-generated ⎕DMX,
otherwise a DOMAIN ERROR will be issued. For each name specified, the default
value in the new instance of ⎕DMX is replaced with the value specified. EN must be
one of the names in the error specification. Attempting to specify certain names,
including InternalLocation and DM, will result in a DOMAIN ERROR. The
value which is to be assigned to a name must be appropriate to the name in question.

Dyalog may enhance ⎕DMX in future, thus potentially altering the list of valid and/or
assignable names.

If the first element of Y is an array of name/value pairs then specifying any value for X
will result in a DOMAIN ERROR.

The effect of the system function is to interrupt execution. The state indicator is cut
back to exit from the function or operator containing the line that invoked
⎕SIGNAL, or is cut back to exit the Execute (⍎) expression that invoked ⎕SIGNAL.
If executed within a nested dfn, the state indicator is cut back to exit from the capsule
containing the line that invoked ⎕SIGNAL. An error is then generated.

Chapter 4: System Functions 554

An error interrupt may be trapped if the system variable ⎕TRAP is set to intercept the
event. Otherwise, the standard system action is taken (which may involve cutting
back the state indicator further if there are locked functions or operators in the state
indicator). The standard event message is replaced by the text given in X, if present.

Example
⎕VR'DIVIDE'

∇ R←A DIVIDE B;⎕TRAP
[1] ⎕TRAP←11 'E' '→ERR'
[2] R←A÷B ⋄ →0
[3] ERR:'DIVISION ERROR' ⎕SIGNAL 11

∇

2 4 6 DIVIDE 0
DIVISION ERROR

2 4 6 DIVIDE 0
^

If you are using the Microsoft .NET Framework, you may use ⎕SIGNAL to throw an
exception by specifying a value of 90 in Y. In this case, if you specify the optional
left argument X, it must be a reference to a .NET object that is or derives from the
Microsoft .NET class System.Exception. The following example illustrates a
constructor function CTOR that expects to be called with a value for ⎕IO (0 or 1)

∇ CTOR IO;EX
[1] :If IO∊0 1
[2] ⎕IO←IO
[3] :Else
[4] EX←ArgumentException.New'IO must be 0 or 1'
[5] EX ⎕SIGNAL 90
[6] :EndIf

∇

⎕SIGNAL 0: Reset error-related system constants
If Y is a simple integer with the value 0, ⎕SIGNAL does not interrupt execution, but
merely returns the value 0. The side effect of calling ⎕SIGNAL 0 is to reset the
values of ⎕DM, ⎕DMX, ⎕EN and ⎕EXCEPTION to their default values. ⎕SIGNAL 0 is
the only form of ⎕SIGNAL which can be used to reset the aforementioned system
constants; including a left argument or using a name/value pair right argument of
⎕SIGNAL will result in a DOMAIN ERROR.

Chapter 4: System Functions 555

Example:
÷0

DOMAIN ERROR: Divide by zero
÷0
∧
⎕DM ⎕EN ⎕DMX

┌──────────────────────────────┬──┬─────────────────────────┐
│┌────────────┬────────┬──────┐│11│ EM DOMAIN ERROR │
││DOMAIN ERROR│ ÷0│ ∧││ │ Message Divide by zero │
│└────────────┴────────┴──────┘│ │ │
└──────────────────────────────┴──┴─────────────────────────┘

⊢⎕SIGNAL 0
0

⎕DM ⎕EN ⎕DMX
┌┬─┬┐
││0││
└┴─┴┘

Further examples
Example 1

'Hello'⎕SIGNAL 200
Hello

'Hello'⎕SIGNAL 200
∧
⎕DMX

EM Hello
Message

⎕DM
Hello 'Hello'⎕SIGNAL 200 ∧

⎕SIGNAL⊂⊂('EN' 200)
ERROR 200

⎕SIGNAL⊂⊂('EN' 200)
∧

⎕DMX
EM ERROR 200
Message

⎕DM
ERROR 200 ⎕SIGNAL⊂⊂('EN' 200) ∧

Chapter 4: System Functions 556

Example 2
⎕SIGNAL⊂('EN' 200)('Vendor' 'Andy')('Message' 'My error')

ERROR 200: My error
⎕SIGNAL⊂('EN' 200)('Vendor' 'Andy')('Message' 'My error')
∧

⎕DMX
EM ERROR 200
Message My error

⍪⎕DMX.(EN EM Vendor)
200

ERROR 200
Andy

Be aware of the following case, in which the argument has not been sufficiently
nested:

⎕SIGNAL⊂('EN' 200)
DOMAIN ERROR: Unexpected name in signalled ⎕DMX specification

⎕SIGNAL⊂('EN' 200)
∧

Chapter 4: System Functions 557

Size of Object R←⎕SIZE Y

Ymust be a simple character scalar, vector or matrix, or a vector of character vectors
containing a list of names. R is a simple integer vector of non-negative elements with
the same length as the number of names in Y.

If the name in Y identifies an object with an active referent, the workspace required in
bytes by that object is returned in the corresponding element of R. Otherwise, 0 is
returned in that element of R.

The result returned for an external variable is the space required to store the external
array. The result for a system constant, variable or function is 0. The result returned
for a GUI object gives the amount of workspace needed to store it, but excludes the
space required for its children.

Note: Wherever possible, Dyalog APL shares the whole or part of a workspace
object rather than generates a separate copy; however ⎕SIZE reports the size as
though nothing is shared. ⎕SIZE also includes the space required for the interpreter's
internal information about the object in question.

Examples
⎕VR 'FOO'

∇ R←FOO
[1] R←10

∇

A←⍳10

'EXT/ARRAY' ⎕XT'E' ⋄ E←⍳20

⎕SIZE 'A' 'FOO' 'E' 'UND'
28 76 120 0

Chapter 4: System Functions 558

Screen Map ⎕SM

⎕SM is a system variable that defines a character-based user interface (as opposed to a
graphical user interface). In versions of Dyalog APL that support asynchronous
terminals, ⎕SM defines a form that is displayed on the USER SCREEN. The
implementation of ⎕SM in "window" environments is compatible with these versions.
In Dyalog APL/X, ⎕SM occupies its own separate window on the display, but is
otherwise equivalent. In versions of Dyalog APL with GUI support, ⎕SM either
occupies its own separate window (as in Dyalog APL/X) or, if it exists, uses the
window assigned to the SM object. This allows ⎕SM to be used in a GUI application
in conjunction with other GUI components.

In general ⎕SM is a nested matrix containing between 3 and 13 columns. Each row
of ⎕SM represents a field; each column a field attribute.

The columns have the following meanings:

Column Description Default

1 Field Contents N/A

2 Field Position - Top Row N/A

3 Field Position - Left Column N/A

4 Window Size - Rows 0

5 Window Size - Columns 0

6 Field Type 0

7 Behaviour 0

8 Video Attributes 0

9 Active Video Attributes ¯1

10 Home Element - Row 1

11 Home Element - Column 1

12 Scrolling Group - Vertical 0

13 Scrolling Group - Horizontal 0

With the exception of columns 1 and 8, all elements in ⎕SM are integer scalar values.

Chapter 4: System Functions 559

Elements in column 1 (Field Contents) may be:

l A numeric scalar
l A numeric vector
l A 1-column numeric matrix
l A character scalar
l A character vector
l A character matrix (rank 2)
l A nested matrix defining a sub-form whose structure and contents must
conform to that defined for ⎕SM as a whole. This definition is recursive.
Note however that a sub-form must be a matrix - a vector is not allowed.

Elements in column 8 (Video Attributes) may be:

l An integer scalar that specifies the appearance of the entire field.
l An integer array of the same shape as the field contents. Each element
specifies the appearance of the corresponding element in the field contents.

Screen Management (Async Terminals)
Dyalog APL for UNIX systems on tty devices (async terminals or on terminal
emulators) manages two screens; the SESSION screen and the USER screen. If the
SESSION screen is current, an assignment to ⎕SM causes the display to switch to the
USER screen and show the form defined by ⎕SM.

Note that the RIDE does not directly support ⎕SM, although it is possible to display
⎕SM in the tty session to which a RIDE client is connected.

If the USER screen is current, any change in the value of ⎕SM is immediately
reflected by a corresponding change in the appearance of the display. However, an
assignment to ⎕SM that leaves its value unchanged has no effect.

Dyalog APL automatically switches to the SESSION screen for default output, if it
enters immediate input mode (6-space prompt), or through use of ⎕ or ⍞. This means
that typing

⎕SM ← expression

in the APL session will cause the screen to switch first to the USER screen, display
the form defined by ⎕SM, and then switch back to the SESSION screen to issue the 6-
space prompt. This normally happens so quickly that all the user sees is a flash on
the screen.

To retain the USER screen in view it is necessary to issue a call to ⎕SR or for APL to
continue processing. e.g.

⎕SM ← expression ⋄ ⎕SR 1

or

⎕SM ← expression ⋄ ⎕DL 5

Chapter 4: System Functions 560

Screen Management (Window Versions)
In Dyalog APL/X, and optionally in Dyalog APL/W, ⎕SM is displayed in a separate
USER WINDOW on the screen. In an end-user application this may be the only
Dyalog APL window. However, during development, there will be a SESSION
window, and perhaps EDIT and TRACE windows too.

The USERWindow will only accept input during execution of ⎕SR. It is otherwise
"output-only". Furthermore, during the execution of ⎕SR it is the only active
window, and the SESSION, EDIT and TRACEWindows will not respond to user
input.

Screen Management (GUI Versions)
In versions of Dyalog APL that provide GUI support, there is a special SM object
that defines the position and size of the window to be associated with ⎕SM. This
allows character-mode applications developed for previous versions of Dyalog APL
to be migrated to and integrated with GUI environments without the need for a total
re-write.

Effect of Localisation
Like all system variables (with the exception of ⎕TRAP) ⎕SM is subject to "pass-
through localisation". This means that a localised ⎕SM assumes its value from the
calling environment. The localisation of ⎕SM does not, of itself therefore, affect the
appearance of the display. However, reassignment of a localised ⎕SM causes the new
form to overlay rather than replace whatever forms are defined further down the stack.
The localisation of ⎕SM thus provides a simple method of defining pop-up forms,
help messages, etc.

The user may edit the form defined by ⎕SM using the system function ⎕SR. Under
the control of ⎕SR the user may change the following elements in ⎕SM which may
afterwards be referenced to obtain the new values.

Column 1 Field Contents
Column 10 Home Element - Row (by scrolling vertically)
Column 11 Home Element - Column (by scrolling horizontally)

Chapter 4: System Functions 561

Screen Read R←{X}⎕SR Y

⎕SR is a system function that allows the user to edit or otherwise interact with the
form defined by ⎕SM.

In versions of Dyalog APL that support asynchronous terminals, if the current screen
is the SESSION screen, ⎕SR immediately switches to the USER SCREEN and
displays the form defined by ⎕SM.

In Dyalog APL/X, ⎕SR causes the input cursor to be positioned in the USER
window. During execution of ⎕SR, only the USERWindow defined by ⎕SM will
accept input and respond to the keyboard or mouse. The SESSION and any EDIT
and TRACEWindows that may appear on the display are dormant.

In versions of Dyalog APL with GUI support, a single SM object may be defined.
This object defines the size and position of the ⎕SM window, and allows ⎕SM to be
used in conjunctions with other GUI components. In these versions, ⎕SR acts as a
superset of ⎕DQ (see Dequeue Events on page 333) but additionally controls the
character-based user interface defined by ⎕SM.

Y is an integer vector that specifies the fields which the user may visit. In versions
with GUI support, Ymay additionally contain the names of GUI objects with which
the user may also interact.

If specified, Xmay be an enclosed vector of character vectors defining EXIT_KEYS
or a 2-element nested vector defining EXIT_KEYS and the INITIAL_CONTEXT.

The result R is the EXIT_CONTEXT.

Thus the 3 uses of ⎕SR are:

EXIT_CONTEXT←⎕SR FIELDS

EXIT_CONTEXT←(⊂EXIT_KEYS)⎕SR FIELDS

EXIT_CONTEXT←(EXIT_KEYS)(INITIAL_CONTEXT)⎕SR FIELDS

Chapter 4: System Functions 562

FIELDS
If an element of Y is an integer scalar, it specifies a field as the index of a row in ⎕SM
(if ⎕SM is a vector it is regarded as having 1 row).

If an element of Y is an integer vector, it specifies a sub-field. The first element in Y
specifies the top-level field as above. The next element is used to index a row in the
form defined by ⊃⎕SM[Y[1];1] and so forth.

If an element of Y is a character scalar or vector, it specifies the name of a top-level
GUI object with which the user may also interact. Such an object must be a "top-
level" object, i.e. the Root object ('.') or a Form or pop-up Menu. This feature is
implemented ONLY in versions of Dyalog APL with GUI support.

EXIT_KEYS
Each element of EXIT_KEYS is a 2-character code from the Input Translate Table for
the keyboard. If the user presses one of these keys, ⎕SR will terminate and return a
result.

If EXIT_KEYS is not specified, it defaults to:

'ER' 'EP' 'QT'

which (normally) specifies <Enter>, <Esc> and <Shift+Esc>.

INITIAL_CONTEXT
This is a vector of between 3 and 6 elements with the following meanings and
defaults:

Element Description Default

1 Initial Field N/A

2 Initial Cursor Position - Row N/A

3 Initial Cursor Position - Col N/A

4 Initial Keystroke ''

5 (ignored) N/A

6 Changed Field Flags 0

Chapter 4: System Functions 563

Structure of INITIAL_CONTEXT

INITIAL_CONTEXT[1] specifies the field in which the cursor is to be placed. It is
an integer scalar or vector, and must be a member of Y. It must not specify a field
which has BUTTON behaviour (64), as the cursor is not allowed to enter such a field.

INITIAL_CONTEXT[2 3] are integer scalars which specify the initial cursor
position within the field in terms of row and column numbers.

INITIAL_CONTEXT[4] is either empty, or a 2-element character vector specifying
the initial keystroke as a code from the Input Translate Table for the keyboard.

INITIAL_CONTEXT[5] is ignored. It is included so that the EXIT_CONTEXT
result of one call to ⎕SR can be used as the INITIAL_CONTEXT to a subsequent
call.

INITIAL_CONTEXT[6] is a Boolean scalar or vector the same length as Y. It
specifies which of the fields in Y has been modified by the user.

EXIT_CONTEXT
The result EXIT_CONTEXT is a 6 or 9-element vector whose first 6 elements have
the same structure as the INITIAL_CONTEXT. Elements 7-9 only apply to those
versions of Dyalog APL that provide mouse support.

Element Description

1 Final Field

2 Final Cursor Position - Row

3 Final Cursor Position - Col

4 Terminating Keystroke

5 Event Code

6 Changed Field Flags

7 Pointer Field

8 Pointer Position - Row

9 Pointer Position - Col

Chapter 4: System Functions 564

Structure of the Result of ⎕SR

EXIT_CONTEXT[1] contains the field in which the cursor was when ⎕SR
terminated due to the user pressing an exit key or due to an event occurring. It is an
integer scalar or vector, and a member of Y.

EXIT_CONTEXT[2 3] are integer scalars which specify the row and column
position of the cursor within the field EXIT_CONTEXT[1] when ⎕SR terminated.

EXIT_CONTEXT[4] is a 2-element character vector specifying the last keystroke
pressed by the user before ⎕SR terminated. Unless ⎕SR terminated due to an event,
EXIT_CONTEXT[4] will contain one of the exit keys defined by X. The keystroke
is defined in terms of an Input Translate Table code.

EXIT_CONTEXT[5] contains the sum of the event codes that caused ⎕SR to
terminate. For example, if the user pressed a mouse button on a BUTTON field (event
code 64) and the current field has MODIFIED behaviour (event code 2) EXIT_
CONTEXT[5] will have the value 66.

EXIT_CONTEXT[6] is a Boolean scalar or vector the same length as Y. It specifies
which of the fields in Y has been modified by the user during this ⎕SR, ORed with
INITIAL_CONTEXT[6]. Thus if the EXIT_CONTEXT of one call to ⎕SR is fed
back as the INITIAL_CONTEXT of the next, EXIT_CONTEXT[6] records the
fields changed since the start of the process.

EXIT_CONTEXT (Window Versions)
⎕SR returns a 9-element result ONLY if it is terminated by the user pressing a mouse
button. In this case:

EXIT_CONTEXT[7] contains the field over which the mouse pointer was
positioned when the user pressed a button. It is an integer scalar or vector, and a
member of Y.

EXIT_CONTEXT[8 9] are integer scalars which specify the row and column
position of the mouse pointer within the field EXIT_CONTEXT[7] when ⎕SR
terminated.

Note:
This function is disabled and instead generates a DOMAIN ERROR if the RIDE_
SPAWNED parameter is non-zero. This is designed to prevent it being invoked from
a RIDE session which does not support this type of user interface. For further details,
see the RIDE User Guide.

Chapter 4: System Functions 565

Source R←⎕SRC Y

⎕SRC returns the script that defines the scripted object Y.

Ymust be a reference to a scripted object. Scripted objects include Classes, Interfaces
and scripted Namespaces.

R is a vector of character vectors containing the script that was used to define Y.

)ed ○MyClass

:Class MyClass
∇ r←foo arg
:Access public shared
r←1+arg
∇
:EndClass

z←⎕SRC MyClass
⍴z

6
⍴¨z

14 15 27 13 5 9
⍪z

:Class MyClass
∇ r←foo arg

:Access public shared
r←1+arg

∇
:EndClass

Note: The only two ways to permanently alter the source of a scripted object are to
change the object in the editor, or by refixing it using ⎕FIX. A useful technique to
ensure that a scripted object is in sync with its source is to ⎕FIX ⎕SRC ref, where
ref is an object reference..

Chapter 4: System Functions 566

State Indicator Stack R←⎕STACK

R is a two-column matrix, with one row per entry in the state indicator.

Column 1 :⎕OR form of user defined functions or operators on the state indicator.
Space (⎕UCS 32) for entries that are not user defined functions or operators.

Column 2 :Indication of the type of the item on the stack.

space user defined function or operator

⍎ execute level

⎕ evaluated input

* desk calculator level

⎕DQ in callback function

other primitive operator

Example
)SI

#.PLUS[2]*
.
#.MATDIV[4]
#.FOO[1]*
⍎

⎕STACK
*

∇PLUS
.

∇MATDIV
*

∇FOO
⍎
*

⍴⎕STACK
8 2

(⍴⎕LC)=1↑⍴⎕STACK
0

Chapter 4: System Functions 567

Pendent defined functions and operators may be edited in Dyalog APL with no
resulting SI damage. However, only the visible definition is changed; the pendent
version on the stack is retained until its execution is complete. When the function or
operator is displayed, only the visible version is seen. Hence ⎕STACK is a tool which
allows the user to display the form of the actual function or operator being executed.

Example
To display the version of MATDIV currently pendent on the stack:

⊃⎕STACK[4;1]
∇ R←A MATDIV B

[1] ⍝ Divide matrix A by matrix B
[2] C←A⌹B
[3] ⍝ Check accuracy
[4] D←⌊0.5+A PLUS.TIMES B

∇

Chapter 4: System Functions 568

State of Object R←⎕STATE Y

Ymust be a simple character scalar or vector which is taken to be the name of an APL
object or a system variable. The result returned is a nested vector of 4 elements as
described below. ⎕STATE supplies information about shadowed or localised objects
that is otherwise unobtainable.

1⊃R
Boolean vector, element set to 1 if and only if this level shadows Y.
Note: (⍴1⊃R)=⍴⎕LC

2⊃R

Numeric vector giving the stack state of this name as it entered this
level. Note: (⍴2⊃R)=⍴⎕LC
0=not on stack
1=suspended
2=pendent (may also be suspended)
3=active (may also be pendent or suspended)

3⊃R
Numeric vector giving the name classification of Y as it entered this
level. Note: (⍴3⊃R)=+/1⊃R

4⊃R
Vector giving the contents of Y before it was shadowed at this level.
Note: (⍴4⊃R)=+/0≠3⊃R

Example
⎕FMT∘⎕OR¨'FN1' 'FN2' 'FN3'

∇ FN1;A;B;C ∇ FN2;A;C ∇ FN3;A
[1] A←1 [1] A←'HELLO' [1] A←100
[2] B←2 [2] B←'EVERYONE' [2] ∘
[3] C←3 [3] C←'HOW ARE YOU?' ∇
[4] FN2 [4] FN3

∇ ∇

)SI
#.FN3[2]*
#.FN2[4]
#.FN1[4]

⎕STATE 'A'
1 1 1 0 0 0 2 2 0 HELLO 1

⎕FMT∘⎕OR¨'foo' 'goo'
∇ foo;⎕IO ∇ goo;⎕IO

[1] ⎕IO←0 [1] ⎕IO←1
[2] goo [2] ⎕STATE'⎕IO'

∇ ∇

foo
1 1 0 0 ¯1 ¯1 0 1

Chapter 4: System Functions 569

Set Stop {R}←X ⎕STOP Y

Ymust be a simple character scalar or vector which is taken to be the name of a
visible defined function or operator. Xmust be a simple non-negative integer scalar
or vector. R is a simple integer vector of non-negative elements. X identifies the
numbers of lines in the function or operator named by Y on which a stop control is to
be placed. Numbers outside the range of line numbers in the function or operator
(other than 0) are ignored. The number 0 indicates that a stop control is to be placed
immediately prior to exit from the function or operator. If X is empty, all existing
stop controls are cancelled. The value of X is independent of ⎕IO.

R is a vector of the line numbers on which a stop control has been placed in
ascending order. The result is suppressed unless it is explicitly used or assigned.

Examples
⊢(0,⍳10) ⎕STOP 'FOO'

0 1

Existing stop controls in the function or operator named by Y are cancelled before
new stop controls are set:

⊢1 ⎕STOP 'FOO'
1

All stop controls may be cancelled by giving X an empty vector:

⍴'' ⎕STOP 'FOO'
0

⍴⍬ ⎕STOP 'FOO'
0

Attempts to set stop controls in a locked function or operator are ignored.

⎕LOCK'FOO'

⊢0 1 ⎕STOP'FOO'

The effect of ⎕STOP when a function or operator is invoked is to suspend execution
at the beginning of any line in the function or operator on which a stop control is
placed immediately before that line is executed, and immediately before exiting from
the function or operator if a stop control of 0 is set. Execution may be resumed by a
branch expression. A stop control interrupt (1001) may also be trapped - see Trap
Event on page 587.

Chapter 4: System Functions 570

Example
⎕FX'R←FOO' 'R←10'

0 1 ⎕STOP'FOO'

FOO
FOO[1]

R
VALUE ERROR

R
^

→1
FOO[0]

R
10

→⎕LC
10

Query Stop R←⎕STOP Y

Ymust be a simple character scalar or vector which is taken to be the name of a
visible defined function or operator. R is a simple non-negative integer vector of the
line numbers of the function or operator named by Y on which stop controls are set,
shown in ascending order. The value 0 in R indicates that a stop control is set
immediately prior to exit from the function or operator.

Example
⎕STOP'FOO'

0 1

Chapter 4: System Functions 571

Set Access Control R←X ⎕SVC Y

This system function sets access control on one or more shared variables.

Y is a character scalar, vector, or matrix containing names of shared variables. Each
name may optionally be paired with its surrogate. If so, the surrogate must be
separated from the name by at least one space.

Xmay be a 4-element Boolean vector which specifies the access control to be applied
to all of the shared variables named in Y. Alternatively, Xmay be a 4-column
Boolean matrix whose rows specify the access control for the corresponding name in
Y. Xmay also be a scalar or a 1-element vector. If so, it treated as if it were a 4-
element vector with the same value in each element.

Each shared variable has a current access control vector which is a 4-element
Boolean vector. A 1 in each of the four positions has the following impact :

[1]
You cannot set a new value for the shared variable until after an
intervening use or set by your partner.

[2]
Your partner cannot set a new value for the shared variable until after
an intervening use or set by you.

[3]
You cannot use the value of the shared variable until after an
intervening set by your partner.

[4]
Your partner cannot use the value of the shared variable until after an
intervening set by you.

The effect of ⎕SVC is to reset the access control vectors for each of the shared
variables named in Y by OR-ing the values most recently specified by your partner
with the values in X. This means that you cannot reset elements of the control vector
which your partner has set to 1.

Note that the initial value of your partner's access control vector is normally 0 0 0 0.
However, if it is a non-APL client application that has established a hot DDE link, its
access control vector is defined to be 1 0 0 1. This inhibits either partner from setting
the value of the shared variable twice, without an intervening use (or set) by the
other. This prevents loss of data which is deemed to be desirable from the nature of
the link. (An application that requests a hot link is assumed to require every value of
the shared variable, and not to miss any). Note that APL's way of inhibiting another
application from setting the value twice (without an intervening use) is to delay the
acknowledgement of the DDE message containing the second value until the
variable has been used by the APL workspace. An application that waits for an
acknowledgement will therefore hang until this happens. An application that does
not wait will carry on obliviously.

Chapter 4: System Functions 572

The result R is a Boolean vector or matrix, corresponding to the structure of X, which
contains the new access control settings. If Y refers to a name which is not a shared
variable, or if the surrogate name is mis-spelt, the corresponding value in R is 4⍴0.

Examples
1 0 0 1 ⎕SVC 'X'

1 0 0 1

1 ⎕SVC 'X EXTNAME'
1 1 1 1

(2 4⍴1 0 0 1 0 1 1 0) ⎕SVC ↑'ONE' 'TWO'
1 1 1 1
0 1 1 0

Query Access Control R←⎕SVC Y

This system function queries the access control on one or more shared variables.

Y is a character scalar, vector, or matrix containing names of shared variables. Each
name may optionally be paired with its surrogate. If so, the surrogate must be
separated from the name by at least one space.

If Y specifies a single name, the result R is a Boolean vector containing the current
effective access control vector. If Y is a matrix of names, R is a Boolean matrix whose
rows contain the current effective access control vectors for the corresponding row in
Y.

For further information, see the preceding section on setting the access control vector.

Example
⎕SVC 'X'

0 0 0 0

Chapter 4: System Functions 573

Shared Variable Offer R←X ⎕SVO Y

This system function offers to share one or more variables with another APL
workspace or with another application. Shared variables are implemented using
Dynamic Data Exchange (DDE) and may be used to communicate with any other
application that supports this protocol. See Interface Guide for further details.

Y is a character scalar, vector or matrix. If it is a vector it contains a name and
optionally an external name or surrogate. The first name is the name used internally
in the current workspace. The external name is the name used to make the
connection with the partner and, if specified, must be separated from the internal
name by one or more blanks. If the partner is another application, the external name
corresponds to the DDE item specified by that application. If the external name is
omitted, the internal name is used instead. The internal name must be a valid APL
name and be either undefined or be the name of a variable. There are no such
restrictions on the content of the external name.

Instead of an external name, Ymay contain the special symbol '⍎' separated from
the (internal) name by a blank. This is used to implement a mechanism for sending
DDE_EXECUTEmessages, and is described at the end of this section.

If Y is a scalar, it specifies a single 1-character name. If Y is a matrix, each row of Y
specifies a name and an optional external name as for the vector case.

The left argument X is a character vector or matrix. If it is a vector, it contains a string
that defines the protocol, the application to which the shared variable is to be
connected, and the topic of the conversation. These three components are separated
by the characters ':' and '|' respectively. The protocol is currently always
'DDE', but future implementations of Dyalog APL may support additional
communications protocols if applicable. If Y specifies more than one name, Xmay be
a vector or a matrix with one row per row in Y.

If the shared variable offer is a general one (server), X, or the corresponding row of X,
should just contain 'DDE:'. In this case, Dyalog automatically defines the
application name and topic to be dyalog and ⎕WSID respectively.

The result R is a numeric scalar or vector with one element for each name in Y and
indicates the "degree of coupling". A value of 2 indicates that the variable is fully
coupled (via a warm or hot DDE link) with a shared variable in another APL
workspace, or with a DDE item in another application. A value of 1 indicates that
there is no connection, or that the second application rejected a warm link. In this
case, a transfer of data may have taken place (via a cold link) but the connection is no
longer open. Effectively, APL treats an application that insists on a cold link as if it
immediately retracts the sharing after setting or using the value, whichever is
appropriate.

Chapter 4: System Functions 574

Examples
'DDE:' ⎕SVO 'X'

1

'DDE:' ⎕SVO 'X SALES_92'
1

'DDE:' ⎕SVO ↑'X SALES_92' 'COSTS_92'
1 1

'DDE:DYALOG|SERV_WS' ⎕SVO 'X'
2

'DDE:EXCEL|SHEET1' ⎕SVO 'DATA R1C1:R10C12'
2

A special syntax is used to provide a mechanism for sending DDE_EXECUTE
messages to another application. This case is identified by specifying the '⍎'
symbol in place of the external name. The subsequent assignment of a character
vector to a variable shared with the external name of '⍎' causes the value of the
variable to be transmitted in the form of a DDE_EXECUTEmessage. The value of the
variable is then reset to 1 or 0 corresponding to a positive or negative
acknowledgement from the partner. In most (if not all) applications, commands
transmitted in DDE_EXECUTEmessages must be enclosed in square brackets []. For
details, see the relevant documentation for the external application.

Examples:
'DDE:EXCEL|SYSTEM' ⎕SVO 'X ⍎'

2

X←'[OPEN("c:\mydir\mysheet.xls")]'
X

1

X←'[SELECT("R1C1:R5C10")]'
X

1

Chapter 4: System Functions 575

Query Degree of Coupling R←⎕SVO Y

This system function returns the current degree of coupling for one or more shared
variables.

Y is a character scalar, vector or matrix. If it is a vector it contains a shared variable
name and optionally its external name or surrogate separated from it by one of more
blanks.

If Y is a scalar, it specifies a single 1-character name. If Y is a matrix, each row of Y
specifies a name and an optional external name as for the vector case.

If Y specifies a single name, the result R is a 1-element vector whose value 0, 1 or 2
indicates its current degree of coupling. If Y specifies more than one name, R is a
vector whose elements indicate the current degree of coupling of the variable
specified by the corresponding row in Y. A value of 2 indicates that the variable is
fully coupled (via a warm or hot DDE link) with a shared variable in another APL
workspace, or with a DDE item in another application. A value of 1 indicates that
you have offered the variable but there is no such connection, or that the second
application rejected a warm link. In this case, a transfer of data may have taken place
(via a cold link) but the connection is no longer open. A value of 0 indicates that the
name is not a shared variable.

Examples
⎕SVO 'X'

2
⎕SVO ↑'X SALES' 'Y' 'JUNK'

2 1 0

Chapter 4: System Functions 576

Shared Variable Query R←⎕SVQ Y

This system function is implemented for compatibility with other versions of APL
but currently performs no useful function. Its purpose is to obtain a list of
outstanding shared variable offers made to you, to which you have not yet
responded.

Using DDE as the communication protocol, it is not possible to implement ⎕SVQ
effectively.

Shared Variable Retract Offer R←⎕SVR Y

This system function terminates communication via one or more shared variables, or
aborts shared variable offers that have not yet been accepted.

Y is a character scalar, vector or matrix. If it is a vector it contains a shared variable
name and optionally its external name or surrogate separated from it by one of more
blanks. If Y is a scalar, it specifies a single 1-character name. If Y is a matrix, each
row of Y specifies a name and an optional external name as for the vector case.

The result R is vector whose length corresponds to the number of names specified by
Y, indicating the level of sharing of each variable after retraction.

See Shared Variable State on page 577 for further information on the possible states
of a shared variable.

Chapter 4: System Functions 577

Shared Variable State R←⎕SVS Y

This system function returns the current state of one or more shared variables.

Y is a character scalar, vector or matrix. If it is a vector it contains a shared variable
name and optionally its external name or surrogate separated from it by one of more
blanks. If Y is a scalar, it specifies a single 1-character name. If Y is a matrix, each
row of Y specifies a name and an optional external name as for the vector case.

If Y specifies a single name, the result R is a 4-element vector indicating its current
state. If Y specifies more than one name, R is a matrix whose rows indicate the
current state of the variable specified by the corresponding row in Y.

There are four possible shared variable states:

0 0 1 1
means that you and your partner are both aware of the current
value, and neither has since reset it. This is also the initial
value of the state when the link is first established.

1 0 1 0
means that you have reset the shared variable and your partner
has not yet used it. This state can only occur if both partners
are APL workspaces.

0 1 0 1
means that your partner has reset the shared variable but that
you have not yet used it.

0 0 0 0 the name is not that of a shared variable

Examples
⎕SVS 'X'

0 1 0 1

⎕SVS ↑'X SALES' 'Y' 'JUNK'
0 0 1 1
1 0 1 0
0 0 0 0

Chapter 4: System Functions 578

Terminal Control (⎕ML) R←⎕TC

⎕TC is a deprecated feature and is replaced by ⎕UCS (see note).

⎕TC is a simple three element vector. If ⎕ML < 3 this is ordered as follows:

⎕TC[1] Backspace

⎕TC[2] Linefeed

⎕TC[3] Newline

Note that ⎕TC≡⎕AV[⎕IO+⍳3] for ⎕ML< 3 .

If ⎕ML ≥ 3 the order of the elements of ⎕TC is instead compatible with IBM's
APL2:

⎕TC[1] Backspace

⎕TC[2] Newline

⎕TC[3] Linefeed

Elements of ⎕TC beyond 3 are not defined but are reserved.

Note
With the introduction of ⎕UCS in Version 12.0, the use of ⎕TC is discouraged and it
is strongly recommended that you generate control characters using ⎕UCS instead.
This recommendation holds true even if you continue to use the Classic Edition.

Control Character Old New

Backspace ⎕TC[1] ⎕UCS 8

Linefeed ⎕TC[2] (⎕ML<3)
⎕TC[3] (⎕ML≥3)

⎕UCS 10

Newline ⎕TC[3] (⎕ML<3)
⎕TC[2] (⎕ML≥3)

⎕UCS 13

Chapter 4: System Functions 579

Thread Child Numbers R←⎕TCNUMS Y

Ymust be a simple array of integers representing thread numbers.

The result R is a simple integer vector of the child threads of each thread of Y.

Examples
⎕TCNUMS 0

2 3

⎕TCNUMS 2 3
4 5 6 7 8 9

Get Tokens {R}←{X} ⎕TGET Y

Ymust be a simple integer scalar or vector that specifies one or more tokens, each
with a specific non-zero token type, that are to be retrieved from the pool.

X is an optional time-out value in seconds.

Shy result R is a scalar or vector containing the values of the tokens of type Y that
have been retrieved from the token pool.

Note that types of the tokens in the pool may be positive or negative, and the
elements of Ymay also be positive or negative.

A request (⎕TGET) for a positive token will be satisfied by the presence of a token in
the pool with the same positive or negative type. If the pool token has a positive
type, it will be removed from the pool. If the pool token has a negative type, it will
remain in the pool. Negatively typed tokens will therefore satisfy an infinite number
of requests for their positive equivalents. Note that a request for a positive token will
remove one if it is present, before resorting to its negative equivalent

Chapter 4: System Functions 580

A request for a negative token type will only be satisfied by the presence of a
negative token type in the pool, and that token will be removed.

If, when a thread calls ⎕TGET, the token pool satisfies all of the tokens specified by
Y, the function returns immediately with a (shy) result that contains the values
associated with the pool tokens. Otherwise, the function will block (wait) until all of
the requested tokens are present or until a timeout (as specified by X) occurs.

For example, if the pool contains only tokens of type 2:

⎕TGET 2 4 ⍝ blocks waiting for a 4-token ...

The ⎕TGET operation is atomic in the sense that no tokens are taken from the pool
until all of the requested types are present. While this last example is waiting for a 4-
token, other threads could take any of the remaining 2-tokens.

Note also, that repeated items in the right argument are distinct. The following will
block until there are at least 3 × 2-tokens in the pool:

⎕TGET 3/2 ⍝ wait for 3 × 2-tokens ...

The pool is administered on a first-in-first-out basis. This is significant only if tokens
of the same type are given distinct values. For example:

⎕TGET ⎕TPOOL ⍝ empty pool.

'ABCDE'⎕TPUT¨2 2 3 2 3 ⍝ pool some tokens.

⊢⎕TGET 2 3
AC

⊢⎕TGET 2 3
BE

Timeout is signalled by the return of an empty numeric vector ⍬ (zilde). By default,
the value of a token is the same as its type. This means that, unless you have
explicitly set the value of a token to ⍬, a ⎕TGET result of ⍬ unambiguously
identifies a timeout.

Beware - the following statement will wait forever and can only be terminated by an
interrupt.

⎕TGET 0 ⍝ wait forever ...

Note too that if a thread waiting to ⎕TGET tokens is ⎕TKILLed, the thread
disappears without removing any tokens from the pool. Conversely, if a thread that
has removed tokens from the pools is ⎕TKILLed, the tokens are not returned to the
pool.

Chapter 4: System Functions 581

This Space R←⎕THIS

⎕THIS returns a reference to the current namespace, i.e. to the space in which it is
referenced.

If NC9 is a reference to any object whose name-class is 9, then:

NC9≡NC9.⎕THIS
1

Examples
⎕THIS

#
'X'⎕NS ''
X.⎕THIS

#.X
'F'⎕WC'Form'
'F.B'⎕WC'Button'
F.B.⎕THIS

#.F.B

Polly←⎕NEW Parrot
Polly.⎕THIS

#.[Parrot]

An Instance may use ⎕THIS to obtain a reference to its own Class:

Polly.(⊃⊃⎕CLASS ⎕THIS)
#.Parrot

or a function (such as a Constructor or Destructor) may identify or enumerate all other
Instances of the same Class:

Polly.(⍴⎕INSTANCES⊃⊃⎕CLASS ⎕THIS)
1

Chapter 4: System Functions 582

Current Thread Identity R←⎕TID

R is a simple integer scalar whose value is the number of the current thread.

Examples
⎕TID ⍝ Base thread number

0

⍎&'⎕TID' ⍝ Thread number of async ⍎.
1

Kill Thread {R}←{X}⎕TKILL Y

Ymust be a simple array of integers representing thread numbers to be terminated. X
is a Boolean single, defaulting to 1, which indicates that all descendant threads
should also be terminated.

The shy result R is a vector of the numbers of all threads that have been terminated.

The base thread 0 is always excluded from the cull.

Examples
⎕TKILL 0 ⍝ Kill background threads.

⎕TKILL ⎕TID ⍝ Kill self and descendants.

0 ⎕TKILL ⎕TID ⍝ Kill self only.

⎕TKILL ⎕TCNUMS ⎕TID ⍝ Kill descendants.

Chapter 4: System Functions 583

Current Thread Name ⎕TNAME

The system variable ⎕TNAME reports and sets the name of the current APL thread.
This name is used to identify the thread in the Tracer.

The default value of ⎕TNAME is an empty character vector.

You may set ⎕TNAME to any valid character vector, but it is recommended that
control characters (such as ⎕AV[⎕IO]) be avoided.

Example:
⎕TNAME←'Dylan'
⎕TNAME

Dylan

Thread Numbers R←⎕TNUMS

⎕TNUMS reports the numbers of all current threads.

R is a simple integer vector of the base thread and all its living descendants.

Example
⎕TNUMS

0 2 4 5 6 3 7 8 9

Token Pool R←⎕TPOOL

R is a simple scalar or vector containing the token types for each of the tokens that
are currently in the token pool.

The following (⎕ML=0) function returns a 2-column snapshot of the contents of the
pool. It does this by removing and replacing all of the tokens, restoring the state of
the pool exactly as before. Coding it as a single expression guarantees that snap is
atomic and cannot disturb running threads.

snap←{(⎕TGET ⍵){(⍉↑⍵ ⍺) ⊣ ⍺ ⎕TPUT¨⍵}⍵}

snap ⎕TPOOL
1 hello world
2 2
3 2
2 three-type token
2 2

Chapter 4: System Functions 584

Put Tokens {R}←{X} ⎕TPUT Y

Ymust be a simple integer scalar or vector of non-zero token types.

X is an optional array of values to be stored in each of the tokens specified by Y.

Shy result R is a vector of thread numbers (if any) unblocked by the ⎕TPUT.

Examples
⎕TPUT 2 3 2 ⍝ put a 2-token, a 3-token and

another
2-token into the pool.

88 ⎕TPUT 2 ⍝ put another 2-token into the pool
this token has the value 88.

'Hello'⎕TPUT ¯4 ⍝ put a ¯4-token into the pool with
the value 'Hello'.

If X is omitted, the value associated with each of the tokens added to the pool is the
same as its type.

Note that you cannot put a 0-token into the pool; 0-s are removed from Y.

Chapter 4: System Functions 585

Set Trace {R}←X ⎕TRACE Y

Ymust be a simple character scalar or vector which is taken to be the name of a
visible defined function or operator. Xmust be a simple non-negative integer scalar
or vector.

X identifies the numbers of lines in the function or operator named by Y on which a
trace control is to be placed. Numbers outside the range of line numbers in the
function or operator (other than 0) are ignored. The number 0 indicates that a trace
control is to be placed immediately prior to exit from the function or operator. The
value of X is independent of ⎕IO.

R is a simple integer vector of non-negative elements indicating the lines in the
function or operator on which a trace control has been placed.

Example
+(0,⍳10) ⎕TRACE'FOO'

0 1

Existing trace controls in the function or operator named by Y are cancelled before
new trace controls are set:

+ 1 ⎕TRACE'FOO'
1

All trace controls may be cancelled by giving X an empty vector:

⍴⍬ ⎕TRACE 'FOO'
0

Attempts to set trace controls in a locked function or operator are ignored.

⎕LOCK 'FOO'
+1 ⎕TRACE 'FOO'

The effect of trace controls when a function or operator is invoked is to display the
result of each complete expression for lines with trace controls as they are executed,
and the result of the function if trace control 0 is set. If a line contains expressions
separated by ⋄, the result of each complete expression is displayed for that line after
execution.

The result of a complete expression is displayed even where the result would
normally be suppressed. In particular:

l the result of a branch statement is displayed;
l the result (pass-through value) of assignment is displayed;
l the result of a function whose result would normally be suppressed is
displayed;

Chapter 4: System Functions 586

For each traced line, the output from ⎕TRACE is displayed as a two element vector,
the first element of which contains the function or operator name and line number,
and the second element of which takes one of two forms.

l The result of the line, displayed as in standard output.
l → followed by a line number.

Example
⎕VR 'DSL'

∇ R←DSL SKIP;A;B;C;D
[1] A←2×3+4
[2] B←(2 3⍴'ABCDEF')A
[3] →NEXT×⍳SKIP
[4] 'SKIPPED LINE'
[5] NEXT:C←'one' ⋄ D←'two'
[6] END:R←C D

∇

(0,⍳6) ⎕TRACE 'DSL'

DSL 1
DSL[1] 14
DSL[2] ABC 14

DEF
DSL[3] →5
DSL[5] one
DSL[5] two
DSL[6] one two
DSL[0] one two
one two

Query Trace R←⎕TRACE Y

Ymust be a simple character scalar or vector which is taken to be the name of a
visible defined function or operator. R is a simple non-negative integer vector of the
line numbers of the function or operator named by Y on which trace controls are set,
shown in ascending order. The value 0 in R indicates that a trace control is set to
display the result of the function or operator immediately prior to exit.

Example
⎕TRACE'DSL'

0 1 2 3 4 5 6

Chapter 4: System Functions 587

Trap Event ⎕TRAP

This is a non-simple vector. An item of ⎕TRAP specifies an action to be taken when
one of a set of events occurs. An item of ⎕TRAP is a 2 or 3 element vector whose
items are simple scalars or vectors in the following order:

1. an integer vector whose value is one or more event codes selected from the
list in the Figure on the following two pages.

2. a character scalar whose value is an action code selected from the letters C,
E, N or S.

3. if element 2 is the letter C or E, this item is a character vector forming a
valid APL expression or series of expressions separated by ⋄. Otherwise,
this element is omitted.

An EVENT may be an APL execution error, an interrupt by the user or the system, a
control interrupt caused by the ⎕STOP system function, or an event generated by the
⎕SIGNAL system function.

When an event occurs, the system searches for a trap definition for that event. The
most local ⎕TRAP value is searched first, followed by successive shadowed values of
⎕TRAP, and finally the global ⎕TRAP value. Separate actions defined in a single
⎕TRAP value are searched from left to right. If a trap definition for the event is
found, the defined action is taken. Otherwise, the normal system action is followed.

The ACTION code identifies the nature of the action to be taken when an associated
event occurs. Permitted codes are interpreted as follows:

C Cutback

The state indicator is 'cut back' to the environment in which
the ⎕TRAP is locally defined (or to immediate execution
level). The APL expression in element 3 of the same ⎕TRAP
item is then executed.

E Execute The APL expression in element 3 of the same ⎕TRAP item is
executed in the environment in which the event occurred.

N Next
The event is excluded from the current ⎕TRAP definition.
The search will continue through further localised definitions
of ⎕TRAP.

S Stop Stops the search and causes the normal APL action to be
taken in the environment in which the event occurred.

Chapter 4: System Functions 588

Table 21: Trappable Event Codes
Code Event

0 Any event in range 1-999

1 WS FULL

2 SYNTAX ERROR

3 INDEX ERROR

4 RANK ERROR

5 LENGTH ERROR

6 VALUE ERROR

7 FORMAT ERROR

10 LIMIT ERROR

11 DOMAIN ERROR

12 HOLD ERROR

16 NONCE ERROR

18 FILE TIE ERROR

19 FILE ACCESS ERROR

20 FILE INDEX ERROR

21 FILE FULL

22 FILE NAME ERROR

23 FILE DAMAGED

24 FILE TIED

25 FILE TIED REMOTELY

26 FILE SYSTEM ERROR

28 FILE SYSTEM NOT AVAILABLE

30 FILE SYSTEM TIES USED UP

31 FILE TIE QUOTA USED UP

32 FILE NAME QUOTA USED UP

Chapter 4: System Functions 589

Code Event

34 FILE SYSTEM NO SPACE

35 FILE ACCESS ERROR - CONVERTING FILE

38 FILE COMPONENT DAMAGED

52 FIELD CONTENTS RANK ERROR

53 FIELD CONTENTS TOO MANY COLUMNS

54 FIELD POSITION ERROR

55 FIELD SIZE ERROR

56 FIELD CONTENTS/TYPE MISMATCH

57 FIELD TYPE/BEHAVIOUR UNRECOGNISED

58 FIELD ATTRIBUTES RANK ERROR

59 FIELD ATTRIBUTES LENGTH ERROR

60 FULL-SCREEN ERROR

61 KEY CODE UNRECOGNISED

62 KEY CODE RANK ERROR

63 KEY CODE TYPE ERROR

70 FORMAT FILE ACCESS ERROR

71 FORMAT FILE ERROR

72 NO PIPES

76 PROCESSOR TABLE FULL

84 TRAP ERROR

90 EXCEPTION

92 TRANSLATION ERROR

200-499 Reserved for distributed auxiliary processors

500-999 User-defined events

Chapter 4: System Functions 590

Code Event

1000 Any event in range 1001-1008

1001 Stop vector

1002 Weak interrupt

1003 INTERRUPT

1005 EOF INTERRUPT

1006 TIMEOUT

1007 RESIZE (Dyalog APL/X, Dyalog APL/W)

1008 DEADLOCK

See Programming Reference Guide: Trap Statement for an alternative 'control
structured' error trapping mechanism.

Examples
⎕TRAP←⊂(3 4 5) 'E' 'ERROR' ⋄ ⍴⎕TRAP

1

⎕TRAP
3 4 5 E ERROR

Items may be specified as scalars. If there is only a single trap definition, it need not
be enclosed. However, the value of ⎕TRAP will be rigorously correct:

⎕TRAP←11 'E' '→LAB'

⎕TRAP
11 E →ERR

⍴⎕TRAP
1

The value of ⎕TRAP in a clear workspace is an empty vector whose prototype is

0⍴(⍬ '' ''). A convenient way of cancelling a ⎕TRAP definition is:

⎕TRAP←0⍴⎕TRAP

Event codes 0 and 1000 allow all events in the respective ranges 1-999 and 1000-
1006 to be trapped. Specific event codes may be excluded by the N action (which
must precede the general event action):

⎕TRAP←(1 'N')(0 'E' '→GENERR')

Chapter 4: System Functions 591

The 'stop' action is a useful mechanism for cancelling trap definitions during
development of applications.

The 'cut-back' action is useful for returning control to a known point in the
application system when errors occur. The following example shows a function that
selects and executes an option with a general trap to return control to the function
when an untrapped event occurs:

∇ SELECT;OPT;⎕TRAP
[1] ⍝ Option selection and execution
[2] ⍝ A general cut-back trap
[3] ⎕TRAP←(0 1000)'C' '→ERR'
[4] INP:⍞←'OPTION : ' ⋄ OPT←(OPT≠' ')/OPT←9↓⍞
[5] →EX⍴⍨(⊂OPT)∊Options ⋄ 'INVALID OPTION' ⋄ →INP
[6] EX:⍎OPT ⋄ →INP
[7] ERR:ERROR∆ACTION ⋄ →INP
[8] END:

∇

User-defined events may be signalled through the ⎕SIGNAL system function. A
user-defined event (in the range 500-999) may be trapped explicitly or implicitly by
the event code 0.

Example
⎕TRAP←500 'E' '''USER EVENT 500 - TRAPPED'''

⎕SIGNAL 500
USER EVENT 500 - TRAPPED

Token Requests R←⎕TREQ Y

Y is a simple scalar or vector of thread numbers.

R is a vector containing the concatenated token requests for all the threads specified
in Y. This is effectively the result of catenating all of the right arguments together for
all threads in Y that are currently executing ⎕TGET.

Example
⎕TREQ ⎕TNUMS ⍝ tokens required by all threads.

Chapter 4: System Functions 592

Time Stamp R←⎕TS

This is a seven element vector which identifies the clock time set on the particular
installation as follows:

⎕TS[1] Year

⎕TS[2] Month

⎕TS[3] Day

⎕TS[4] Hour

⎕TS[5] Minute

⎕TS[6] Second

⎕TS[7] Millisecond

Example
⎕TS

1989 7 11 10 42 59 123

Note that on some systems, where time is maintained only to the nearest second, a
zero is returned for the seventh (millisecond) field.

Chapter 4: System Functions 593

Wait for Threads to Terminate R←⎕TSYNC Y

Ymust be a simple array of thread numbers.

If Y is a simple scalar, R is an array, the result (if any) of the thread.

If Y is a simple non-scalar, R has the same shape as Y, and result is an array of
enclosed thread results.

Examples
dup←{⍵ ⍵} ⍝ Duplicate

⎕←dup&88 ⍝ Show thread number
11
88 88

⎕TSYNC dup&88 ⍝ Wait for result
88 88

⎕TSYNC,dup&88
88 88

⎕TSYNC dup&1 2 3
1 2 3 1 2 3

⎕TSYNC dup&¨1 2 3
1 1 2 2 3 3

Deadlock
The interpreter detects a potential deadlock if a number of threads wait for each other
in a cyclic dependency. In this case, the thread that attempts to cause the deadlock
issues error number 1008: DEADLOCK.

⎕TSYNC ⎕TID ⍝ Wait for self
DEADLOCK

⎕TSYNC ⎕TID
^

⎕EN
1008

Chapter 4: System Functions 594

Potential Value Error
If any item of Y does not correspond to the thread number of an active thread, or if
any subject thread terminates without returning a result, then ⎕TSYNC does not
return a result. This means that, if the calling context of the ⎕TSYNC requires a result,
for example: rslt←⎕TSYNC tnums, a VALUE ERROR will be generated. This
situation can occur if threads have completed before ⎕TSYNC is called.

⎕←÷&4 ⍝ thread (3) runs and terminates.
3
0.25

⎕TSYNC 3 ⍝ no result required: no prob
⎕←⎕tsync 3 ⍝ context requires result

VALUE ERROR

⎕←⎕tsync {}&0 ⍝ non-result-returning fn: no
result.
VALUE ERROR

Coding would normally avoid such an inconvenient VALUE ERROR either by
arranging that the thread-spawning and ⎕TSYNC were on the same line:

rslt ← ⎕TSYNC myfn&¨ argvec

or

tnums←myfn&¨ argvec ⋄ rslt←⎕TSYNC tnums

or by error-trapping the VALUE ERROR.

Unicode Convert R←{X} ⎕UCS Y

⎕UCS converts (Unicode) characters into integers and vice versa.

The optional left argument X is a character vector containing the name of a variable-
length Unicode encoding scheme which must be one of:

l 'UTF-8'
l 'UTF-16'
l 'UTF-32'

If not, a DOMAIN ERROR is issued.

If X is omitted, Y is a simple character or integer array, and the result R is a simple
integer or character array with the same rank and shape as Y.

If X is specified, Ymust be a simple character or integer vector, and the result R is a
simple integer or character vector.

Chapter 4: System Functions 595

Monadic ⎕UCS
Used monadically, ⎕UCS simply converts characters to Unicode code points and
vice-versa.

With a few exceptions, the first 256 Unicode code points correspond to the ANSI
character set.

⎕UCS 'Hello World'
72 101 108 108 111 32 87 111 114 108 100

⎕UCS 2 11⍴72 101 108 108 111 32 87 111 114 108 100
Hello World
Hello World

The code points for the Greek alphabet are situated in the 900's:

⎕UCS 'καλημέρα'
954 945 955 951 956 941 961 945

Unicode also contains the APL character set. For example:

⎕UCS 123 40 43 47 9077 41 247 9076 9077 125
{(+/⍵)÷⍴⍵}

Dyadic ⎕UCS
Dyadic ⎕UCS is used to translate between Unicode characters and one of three
standard variable-length Unicode encoding schemes, UTF-8, UTF-16 and UTF-32.
These represent a Unicode character string as a vector of 1-byte (UTF-8), 2-byte
(UTF-16) and 4-byte (UTF-32) signed integer values respectively.

'UTF-8' ⎕UCS 'ABC'
65 66 67

'UTF-8' ⎕UCS 'ABCÆØÅ'
65 66 67 195 134 195 152 195 133

'UTF-8' ⎕UCS 195 134, 195 152, 195 133
ÆØÅ

'UTF-8' ⎕UCS 'γεια σου'
206 179 206 181 206 185 206 177 32 207 131 206 191 207
133

'UTF-16' ⎕UCS 'γεια σου'
947 949 953 945 32 963 959 965

'UTF-32' ⎕UCS 'γεια σου'
947 949 953 945 32 963 959 965

Chapter 4: System Functions 596

Because integers are signed, numbers greater than 127 will be represented as 2-byte
integers (type 163), and are thus not suitable for writing directly to a native file. To
write the above data to file, the easiest solution is to use ⎕UCS to convert the data to
1-byte characters and append this data to the file:

(⎕UCS 'UTF-8' ⎕UCS 'ABCÆØÅ') ⎕NAPPEND tn

Note regarding UTF-16: For most characters in the first plane of Unicode (0000-
FFFF), UTF-16 and UCS-2 are identical. However, UTF-16 has the potential to
encode all Unicode characters, by using more than 2 bytes for characters outside
plane 1.

'UTF-16' ⎕UCS 'ABCÆØÅ⍒⍋'
65 66 67 198 216 197 9042 9035

⎕←unihan←⎕UCS (2×2*16)+⍳3 ⍝ x20001-x20003

'UTF-16' ⎕UCS unihan
55360 56321 55360 56322 55360 56323

Translation Error
⎕UCS will generate a DOMAIN ERROR if the argument cannot be converted.
Additionally, in the Classic Edition, a TRANSLATION ERROR is generated if the
result is not in ⎕AV or the numeric argument is not in ⎕AVU.

Chapter 4: System Functions 597

Using (Microsoft .NET Search Path) ⎕USING

⎕USING specifies a list of Microsoft .NET Namespaces that are to be searched for a
reference to a .NET class.

⎕USING is a vector of character vectors each element of which contains 1 or 2
comma-delimited strings. The first string specifies the name of a .NET namespace; the
second specifies the pathname of an assembly file. This may be a full pathname or a
relative one, but must include the file extension (.dll). If just the file name is
specified, it is assumed to be located in the standard .NET Framework directory that
was specified when the .NET Framework was installed (e.g.
C:\windows\Microsoft.NET\Framework\v2.0.50727)

It is convenient to treat .NET namespaces and assemblies in pairs. For example:

⎕USING←'System,mscorlib.dll'

⎕USING,←⊂'System.Windows.Forms,System.Windows.Forms.dll'
⎕USING,←⊂'System.Drawing,System.Drawing.dll'

Note that because Dyalog APL automatically loads mscorlib.dll (which
contains the most commonly used classes in the System Namespace), it is not
actually necessary to specify it explicitly in ⎕USING.

⎕USING has Namespace scope, i.e. each Dyalog APL Namespace, Class or Instance
has its own value of ⎕USING that is initially inherited from its parent space but
which may be separately modified. ⎕USINGmay also be localised in a function
header, so that different functions can declare different search paths for .NET
namespaces/assemblies.

If ⎕USING is empty (⎕USING←0⍴⊂''), APL will not search for .NET classes in
order to resolve names which would otherwise give a VALUE ERROR.

Assigning a simple character vector to ⎕USING is equivalent to setting it to the
enclose of that vector. The statement (⎕USING←'') does not empty ⎕USING, it sets
it to a single empty element, which gives access to mscorlib.dll and the Bridge
DLL without a namespace prefix.

Notes
l The value of ⎕USING is only used when an object is instantiated. Changing
the value of ⎕USING has no effect on objects that have already been
instantiated in the active workspace.

l When a workspace containing .Net objects is saved, .the names of the Net
objects are saved with it but they are not automatically re-instantiated when
the workspace is loaded or copied. A reference to such an orphaned object
will report (NULL).

Chapter 4: System Functions 598

Examples:
⎕USING←'System'
]display ⎕USING

.→---------.
| .→-----. |
| |System| |
| '------' |
'∊---------'

⎕USING,←⊂'System.Windows.Forms,System.Windows.Forms.dll'
⎕USING,←⊂'System.Drawing,System.Drawing.dll'

An Assembly may contain top-level classes which are not packaged into .NET
Namespaces. In this case, you omit the Namespace name. For example:

⎕USING←,⊂',.\LoanService.dll'

Vector Representation R←⎕VR Y

Ymust be a simple character scalar or vector which represents the name of a function
or defined operator.

If Y is the name of a defined function or defined operator, R is a simple character
vector containing a character representation of the function or operator with each line
except the last terminated by the newline character (⎕UCS ⎕AVU[4]).

Its display form is as follows:

1. the header line starts at column 8 with the ∇ symbol in column 6,
2. the line number for each line of the function starts in column 1,
3. the statement contained in each line starts at column 8 except for labelled

lines or lines beginning with ⍝ which start at column 7,
4. the header line and statements contain no redundant blanks beyond column

7 except that the ⋄ separator is surrounded by single blanks, control
structure indentation is preserved and comments retain embedded blanks as
originally defined,

5. the last line shows only the ∇ character in column 6.

If Y is the name of a variable, a locked function or operator, an external function, or is
undefined, R is an empty vector.

Chapter 4: System Functions 599

Example
⍴V←⎕VR'PLUS'

128

V
∇ R←{A}PLUS B

[1] ⍝ MONADIC OR DYADIC +
[2] →DYADIC⍴⍨2=⎕NC'A' ⋄ R←B ⋄ →END
[3] DYADIC:R←A+B ⋄ →END
[4] END:

∇

The definition of ⎕VR has been extended to names assigned to functions by
specification (←), and to local names of functions used as operands to defined
operators. In these cases, the result of ⎕VR is identical to that of ⎕CR except that the
representation of defined functions and operators is as described above.

Example
AVG←MEAN∘,

+F←⎕VR'AVG'
∇ R←MEAN X ⍝ Arithmetic mean

[1] R←(+/X)÷⍴X
∇ ∘,

⍴F
3

]display F
┌→───┐
│ ┌→───────────────────────────────────┐ │
│ │ ∇ R←MEAN X ⍝ Arithmetic mean│ ∘ , │
│ │[1] R←(+/X)÷⍴X │ - - │
│ │ ∇ │ │
│ └────────────────────────────────────┘ │
└∊───┘

Chapter 4: System Functions 600

Verify & Fix Input R←{X}⎕VFI Y

Y must be a simple character scalar or vector. X is optional. If present, Xmust be a
simple character scalar or vector. R is a nested vector of length two whose first item
is a simple logical vector and whose second item is a simple numeric vector of the
same length as the first item of R.

Y is the character representation of a series of numeric constants. If X is omitted,
adjacent numeric strings are separated by one or more blanks. Leading and trailing
blanks and separating blanks in excess of one are redundant and ignored. If X is
present, X specifies one or more alternative separating characters. Blanks in leading
and trailing positions in Y and between numeric strings separated also by the
character(s) in X are redundant and ignored. Leading, trailing and adjacent
occurrences of the character(s) in X are not redundant. The character 0 is implied in Y
before a leading character, after a trailing character, and between each adjacent pair
of characters specified by X.

The length of the items of R is the same as the number of identifiable strings (or
implied strings) in Y separated by blank or the value of X. An element of the first
item of R is 1 where the corresponding string in Y is a valid numeric representation,
or 0 otherwise. An element of the second item of R is the numeric value of the
corresponding string in Y if it is a valid numeric representation, or 0 otherwise.

Examples
⎕VFI '2 -2 ¯2'

 1 0 1 2 0 ¯2

⎕VFI '12.1 1E1 1A1 ¯10'
1 1 0 1 12.1 10 0 ¯10

⊃(//⎕VFI'12.1 1E1 1A1 ¯10')
12.1 10 ¯10

','⎕VFI'3.9,2.4,,76,'
1 1 1 1 1 3.9 2.4 0 76 0

'⋄'⎕VFI'1 ⋄ 2 3 ⋄ 4 '
1 0 1 1 0 4

(⍬ ⍬)≡⎕VFI''
1

Chapter 4: System Functions 601

Workspace Available R←⎕WA

This is a simple integer scalar. It identifies the total available space in the active
workspace area given as the number of bytes it could hold.

A side effect of using ⎕WA is an internal reorganisation of the workspace and process
memory, as follows:

1. Any un-referenced memory is discarded. This process, known as garbage
collection, is required because whole cycles of refs can become un-
referenced.

2. Numeric arrays are demoted to their tightest form. For example, a simple
numeric array that happens to contain only values 0 or 1, is demoted or
squeezed to have a ⎕DR type of 11 (Boolean).

3. All remaining used memory blocks are copied to the low-address end of the
workspace, leaving a single free block at the high-address end. This process
is known as compaction.

4. All memory allocated is returned to the Operating System except the space
required for the compacted workspace, plus a working overhead based on
the configured maximum workspace size (MAXWS). If the compacted
workspace occupies more than 1/16 ofMAXWS then the overhead is 1/16
of MAXWS, otherwise it is 1/64 ofMAXWS. On a Windows system, you
can see the process size changing by using Task Manager.

Example
⎕WA

261412

See also: Specify Workspace Available on page 215

Chapter 4: System Functions 602

Window Create Object {R}←{X}⎕WC Y

This system function creates a GUI object. Y is either a vector which specifies
properties that determine the new object's appearance and behaviour, or a ref to or
the ⎕OR of a GUI object that exists or previously existed. X is a character vector
which specifies the name of the new object, and its position in the object hierarchy.

If X is omitted, ⎕WC attaches a GUI component to the current namespace, retaining
any functions, variables and other namespaces that it may contain. Monadic ⎕WC is
discussed in detail at the end of this section.

If Y is a nested vector each element specifies a property. The Type property (which
specifies the class of the object)must be specified. Most other properties take default
values and need not be explicitly stated. Properties (including Type) may be
declared either positionally or with a keyword followed by a value. Note that Type
must always be the first property specified. Properties are specified positionally by
placing their values in Y in the order prescribed for an object of that type.

If Y is a ref or the result of ⎕OR, the new object is a complete copy of the other,
including any child objects, namespaces, functions and variables that it contained at
that time.

The shy result R is the full name (starting #. or ⎕SE.) of the namespace X.

An object's name is specified by giving its full pathname in the object hierarchy. At
the top of the hierarchy is the Root object whose name is ".". Below "." there may
be one or more "top-level" objects. The names of these objects follow the standard
rules for other APL objects as described in Chapter 1.

Names for sub-objects follow the same rules except that the character "." is used as a
delimiter to indicate parent/child relationships.

The following are examples of legal and illegal names :

Legal Illegal

FORM1 FORM 1

form_23 form#1

Form1.Gp 11_Form

F1.g2.b34 Form+1

Chapter 4: System Functions 603

If X refers to the name of an APL variable, label, function, or operator, a DOMAIN
ERROR is reported. If X refers to the name of an existing GUI object or namespace,
the existing one is replaced by the new one. The effect is the same as if it were
deleted first.

If Y refers to a non-existent property, or to a property that is not defined for the type
of object X, a DOMAIN ERROR is reported. A DOMAIN ERROR is also reported if a
value is given that is inconsistent with the corresponding property. This can occur
for example, if Y specifies values positionally and in the wrong order.

A "top-level" object created by ⎕WC whose name is localised in a function/operator
header, is deleted on exit from the function/operator. All objects, including sub-
objects, can be deleted using ⎕EX.

GUI objects are named relative to the current namespace, so the following examples
are equivalent:

'F1.B1' ⎕WC 'Button'

is equivalent to :

)CS F1
#.F1

'B1' ⎕WC 'Button'
)CS

#

is equivalent to :

'B1' F1.⎕WC 'Button'

Examples
⍝ Create a default Form called F1

'F1' ⎕WC 'Form'

⍝ Create a Form with specified properties (by position)
⍝ Caption = "My Application" (Title)
⍝ Posn = 10 30 (10% down, 30% across)
⍝ Size = 80 60 (80% high, 60% wide)

'F1' ⎕WC 'Form' 'My Application' (10 30)(80 60)

Chapter 4: System Functions 604

⍝ Create a Form with specified properties (by keyword)
⍝ Caption = "My Application" (Title)
⍝ Posn = 10 30 (10% down, 30% across)
⍝ Size = 80 60 (80% high, 60% wide)

PROPS←⊂'Type' 'Form'
PROPS,←⊂'Caption' 'My Application'
PROPS,←⊂'Posn' 10 30
PROPS,←⊂'Size' 80 60
'F1' ⎕WC PROPS

⍝ Create a default Button (a pushbutton) in the Form F1

'F1.BTN' ⎕WC 'Button'

⍝ Create a pushbutton labelled "Ôk"
⍝ 10% down and 10% across from the start of the FORM
⍝ with callback function FOO associated with EVENT 30
⍝ (this event occurs when the user presses the button)

'F1.BTN'⎕WC'Button' '&Ok' (10 10)('Event' 30 'FOO')

Monadic ⎕WC is used to attach a GUI component to an existing object. The existing
object must be a pure namespace or a GUI object. The operation may be performed
by changing space to the object or by running ⎕WC inside the object using the dot
syntax. For example, the following statements are equivalent.

)CS F
#.F

⎕WC 'Form' ⍝ Attach a Form to this namespace

)CS
#

F.⎕WC'Form' ⍝ Attach a Form to namespace F

Chapter 4: System Functions 605

Window Get Property R←{X}⎕WG Y

This system function returns property values for a GUI object.

X is a namespace reference or a character vector containing the name of the object. Y
is a character vector or a vector of character vectors containing the name(s) of the
properties whose values are required. The result R contains the current values of the
specified properties. If Y specifies a single property name, a single property value is
returned. If Y specifies more than one property, R is a vector with one element per
name in Y.

If X refers to a non-existent GUI name, a VALUE ERROR is reported. If Y refers to a
non-existent property, or to a property that is not defined for the type of object X, a
DOMAIN ERROR is reported.

GUI objects are named relative to the current namespace. A null value of X (referring
to the namespace in which the function is being evaluated) may be omitted. The
following examples are equivalent:

'F1.B1' ⎕WG 'Caption'
'B1' F1.⎕WG 'Caption'
'' F1.B1.⎕WG 'Caption'
F1.B1.⎕WG 'Caption'

Examples
'F1' ⎕WC 'Form' 'TEST'

'F1' ⎕WG 'Caption'
TEST

'F1' ⎕WG 'MaxButton'
1

'F1' ⎕WG 'Size'
50 50

]display 'F1' ⎕WG 'Caption' 'MaxButton' 'Size'
┌→─────────────────┐
│ ┌→───┐ ┌→────┐ │
│ │TEST│ 1 │50 50│ │
│ └────┘ └~────┘ │
└∊─────────────────┘

Chapter 4: System Functions 606

Window Child Names R←{X}⎕WN Y

This system function reports the GUI objects whose parent is Y.

If Y is a name (i.e. is a character vector) then the result R is a vector of character
vectors containing the names of the named direct GUI children of Y.

If Y is a reference then the result R is a vector of references to the direct GUI children
of Y, named or otherwise.

The optional left argument X is a character vector which specifies the Type of GUI
object to be reported; if X is not specified, no such filtering is performed.

Names of objects further down the tree are not returned, but can be obtained by
recursive use of ⎕WN.

If Y refers to a namespace with no GUI element, a VALUE ERROR is reported.

Note that ⎕WN reports only those child objects visible from the current thread.

GUI objects are named relative to the current namespace. The following examples
are equivalent:

⎕WN 'F1.B1'
F1.⎕WN 'B1'
F1.B1.⎕WN ''

Example
f←⎕NEW⊂'Form'
f.n←⎕ns'' ⍝ A non-GUI object
f.l←f.⎕NEW⊂'Label' ⍝ A reference to a Label
'f.b1'⎕wc'Button' ⍝ A named Button
f.(b2←⎕new ⊂'Button') ⍝ A reference to a

Button
⎕wn 'f'

[Form].b1
⎕wn f

#.[Form].[Label] #.[Form].b1 #.[Form].[Button]
'Button' ⎕wn f

#.[Form].b1 #.[Form].[Button]

Chapter 4: System Functions 607

Window Set Property {R}←{X}⎕WS Y

This system function resets property values for a GUI object.

X is a namespace reference or a character vector containing the name of the object. Y
defines the property or properties to be changed and the new value or values. If a
single property is to be changed, Y is a vector whose first element Y[1] is a character
vector containing the property name. If Y is of length 2, Y[2] contains the
corresponding property value. However, if the property value is itself a numeric or
nested vector, its elements may be specified in Y[2 3 4 ...] instead of as a single
nested element in Y[2]. If Y specifies more than one property, they may be declared
either positionally or with a keyword followed by a value. Properties are specified
positionally by placing their values in Y in the order prescribed for an object of that
type. Note that the first property in Ymust always be specified with a keyword
because the Type property (which is expected first) may not be changed using ⎕WS.

If X refers to a non-existent GUI name, a VALUE ERROR is reported. If Y refers to a
non-existent property, or to a property that is not defined for the type of object X, or
to a property whose value may not be changed by ⎕WS, a DOMAIN ERROR is
reported.

The shy result R contains the previous values of the properties specified in Y.

GUI objects are named relative to the current namespace. A null value of X
(referring to the namespace in which the function is being evaluated) may be omitted.
The following examples are equivalent:

'F1.B1' ⎕WS 'Caption' '&Ok'
'B1' F1.⎕WS 'Caption' '&Ok'
'' F1.B1.⎕WS 'Caption' '&Ok'
F1.B1.⎕WS 'Caption' '&Ok'

Examples
'F1' ⎕WC 'Form' ⍝ A default Form

'F1' ⎕WS 'Active' 0

'F1' ⎕WS 'Caption' 'My Application'

'F1' ⎕WS 'Posn' 0 0

'F1' ⎕WS ('Active' 1)('Event' 'Configure' 'FOO')

'F1' ⎕WS 'Junk' 10
DOMAIN ERROR

'F1' ⎕WS 'MaxButton' 0
DOMAIN ERROR

Chapter 4: System Functions 608

Workspace Identification ⎕WSID

This is a simple character vector. It contains the identification name of the active
workspace. If a new name is assigned, that name becomes the identification name of
the active workspace, provided that it is a correctly formed name.

See for workspace naming conventions.

It is useful, though not essential, to associate workspaces with a specific directory in
order to distinguish workspaces from other files.

The value of ⎕WSID in a clear workspace is 'CLEAR WS'.

Example
⎕WSID

CLEAR WS

⎕WSID←'ws/mywork (UNIX)

⎕WSID←'B:\WS\MYWORK' (Windows)

Chapter 4: System Functions 609

Window Expose ⎕WX

⎕WX is a system variable with the value 0, 1 ,2 or 3. Considered as a sum of bit flags,
the first bit in ⎕WX specifies (a); the second (b) as follows:

a. whether or not the names of properties, methods and events provided by a
Dyalog APL GUI object are exposed

b. certain aspects of behaviour of .NET and COM objects

If ⎕WX is 1 (1st bit is set), the names of properties, methods and events are exposed as
reserved names in GUI namespaces and can be accessed directly by name. This means
that the same names may not be used for global variables in GUI namespaces.

If ⎕WX is 0, these names are hidden and may only be accessed indirectly using ⎕WG
and ⎕WS.

If ⎕WX is 3 (2nd bit is also set) COM and .NET objects adopt the behaviour
introduced in Version 11, as opposed to the behaviour in previous versions of
Dyalog APL.

Note that it is the value of ⎕WX in the object itself, rather than the value of ⎕WX in the
calling environment, that determines its behaviour.

When you create an object, its ⎕WX (like any other system variable) is initially
inherited from its parent.

If the value of ⎕WX of a GUI object is initially 0, it will not expose its members. If
you subsequently change it from 0 to 1, it will expose them. If you change its ⎕WX
back to 0, it will not expose any yet-unexposed members, although already-exposed
members will continue to be exposed.

The value of ⎕WX in a clear workspace is defined by the default_wx parameter (see
Installation & Configuration Guide: Configuration Parameters) which itself
defaults to 3.

⎕WX has namespace scope and may be localised in a function header. This allows you
to create a utility namespace or utility function in which the exposure of objects is
known and determined, regardless of its global value in the workspace.

Notes:
l The visibility of the properties and methods of the Root object are not
controlled by ⎕WX but by the PropertyExposeRoot parameter. For further
information, see Installation & Configuration Guide: PropertyExposeRoot
Parameter.

l ⎕WX is retained for backwards compatibility and should be considered as
deprecated. Dyalog recommends ⎕WX be set to 3 and never changed.

Chapter 4: System Functions 610

XML Convert R←{X} ⎕XML Y

⎕XML converts an XML string into an APL array or converts an APL array into an
XML string.

Options for ⎕XML are specified using the Variant operator ⍠ or by the optional left
argument X. The former is recommended but the older mechanism using the left
argument is still supported.

For conversion from XML, Y is a character vector containing an XML string. The
result R is a 5 column matrix whose columns are made up as follows:

Column Description

1 Numeric value which indicates the level of nesting

2 Element name, other markup text, or empty character vector when
empty

3 Character data or empty character vector when empty

4 Attribute name and value pairs, (0 2⍴⊂'') when empty

5 A numeric value which indicates what the row contains

The values in column 5 have the following meanings:

Value Description

1 Element

2 Child element

4 Character data

8 Markup not otherwise defined

16 Comment markup

32 Processing instruction markup

Chapter 4: System Functions 611

Example
x←'<xml><document id="001">An introduction to XML'
x,←'</document></xml>'

]display v←⎕XML x
┌→───┐
↓ ┌→──┐ ┌⊖┐ ┌→────────┐ │
│ 0 │xml│ │ │ ⌽ ┌⊖┐ ┌⊖┐ │ 3 │
│ └───┘ └─┘ │ │ │ │ │ │ │
│ │ └─┘ └─┘ │ │
│ └∊────────┘ │
│ ┌→───────┐ ┌→─────────────────────┐ ┌→───────────┐ │
│ 1 │document│ │An introduction to XML│ ↓ ┌→─┐ ┌→──┐ │ 5 │
│ └────────┘ └──────────────────────┘ │ │id│ │001│ │ │
│ │ └──┘ └───┘ │ │
│ └∊───────────┘ │
└∊───┘

For conversion to XML, Y is a 3, 4 or 5 column matrix and the result R is a character
vector. The columns of Y have the same meaning as those described above for the
result of converting from XML.

Example
⎕XML v

<xml>
<document id="001">An introduction to XML</document>

</xml>

Chapter 4: System Functions 612

Introduction to XML and Glossary of Terms
XML is an open standard, designed to allow exchange of data between applications.
The full specification 1 describes functionality, including processing directives and
other directives, which can transform XML data as it is read, and which a full XML
processor would be expected to handle.

The ⎕XML function is designed to handle XML to the extent required to import and
export APL data. It favours speed over complexity - some markup is tolerated but
largely ignored, and there are no XML query or validation features. APL applications
which require processing, querying or validation will need to call external tools for
this, and finally call ⎕XML on the resulting XML to perform the transformation into
APL arrays.

XML grammar such as processing instructions, document type declarations etc. may
optionally be stored in the APL array, but will not be processed or validated. This is
principally to allow regeneration of XML fromXML input which contains such
structures, but an APL application could process the data if it chose to do so.

The XML definition uses specific terminology to describe its component parts. The
following is a summary of the terms used in this section:

Character Data
Character data consists of free-form text. The free-form text should not include the
characters '>', '<' or '&', so these must be represented by their entity references ('>',
'<' and '&' respectively), or numeric character references.

Entity References and Character References
Entity references are named representations of single characters which cannot
normally be used in character data because they are used to delimit markup, such as
> for '>'. Character references are numeric representations of any character, such as
 for space. Note that character references always take values in the Unicode
code space, regardless of the encoding of the XML text itself.

⎕XML converts entity references and all character references which the APL character
set is able to represent into their character equivalent when generating APL array
data; when generating XML it converts any or all characters to entity references as
needed.

There is a predefined set of entity references, and the XML specification allows
others to be defined within the XML using the <!ENTITY >markup. ⎕XML does
not process these additional declarations and therefore will only convert the
predefined types.

1http://www.w3.org/TR/2008/REC-xml-20081126/

http://www.w3.org/TR/2008/REC-xml-20081126/

Chapter 4: System Functions 613

Whitespace
Whitespace sequences consist of one or more spaces, tabs or line-endings. Within
character data, sequences of one or more whitespace characters are replaced with a
single space when this is enabled by the whitespace option. Line endings are
represented differently on different systems (0x0D 0x0A, 0x0A and 0x0D are all
used) but are normalized by converting them all to 0x0A before the XML is parsed,
regardless of the setting of the whitespace option.

Elements
An element consists of a balanced pair of tags or a single empty element tag. Tags are
given names, and start and end tag names must match.

An example pair of tags, named TagName is

<TagName></TagName>

This pair is shown with no content between the tags; this may be abbreviated as an
empty element tag as

<TagName/>

Tags may be given zero or more attributes, which are specified as name/value pairs;
for example

<TagName AttName="AttValue">

Attribute values may be delimited by either double quotes as shown or single quotes
(apostrophes); they may not contain certain characters (the delimiting quote, '&' or
'<') and these must be represented by entity or character references.

The content of elements may be zero or more mixed occurrences of character data and
nested elements. Tags and attribute names describe data, attribute values and the
content within tags contain the data itself. Nesting of elements allows structure to be
defined.

Because certain markup which describes the format of allowable data (such as
element type declarations and attribute-list declarations) is not processed, no error
will be reported if element contents and attributes do not conform to their restricted
declarations, nor are attributes automatically added to tags if not explicitly given.

Chapter 4: System Functions 614

Attributes with names beginning xml: are reserved. Only xml:space is treated
specially by ⎕XML. When converting both from and to XML, the value for this
attribute has the following effects on space normalization for the character data
within this element and child elements within it (unless subsequently overridden):

l default – space normalization is as determined by the whitespace option.
l preserve - space normalization is disabled – all whitespace is preserved as
given.

l any other value – rejected.

Regardless of whether the attribute name and value have a recognised meaning, the
attribute will be included in the APL array / generated XML. Note that when the
names and values of attributes are examined, the comparisons are case-sensitive and
take place after entity references and character references have been expanded.

Comments
Comments are fully supported markup. They are delimited by '<!--' and '-->' and all
text between these delimiters is ignored. This text is included in the APL array if
markup is being preserved, or discarded otherwise.

CDATA Sections
CDATA Sections are fully supported markup. They are used to delimit text within
character data which has, or may have, markup text in it which is not to be processed
as such. They and are delimited by '<![CDATA[' and ']]>'. CDATA sections are never
recorded in the APL array as markup when XML is processed – instead, that data
appears as character data. Note that this means that if you convert XML to an APL
array and then convert this back to XML, CDATA sections will not be regenerated. It
is, however, possible to generate CDATA sections in XML by presenting them as
markup.

Processing Instructions
Processing Instructions are delimited by '<&' and '&>' but are otherwise treated as
other markup, below.

Chapter 4: System Functions 615

Other markup
The remainder of XMLmarkup, including document type declarations, XML
declarations and text declarations are all delimited by '<!' and '>', and may contain
nested markup. If markup is being preserved the text, including nested markup, will
appear as a single row in the APL array. ⎕XML does not process the contents of such
markup. This has varying effects, including but not limited to the following:

l No validation is performed.
l Constraints specified in markup such element type declarations will be
ignored and therefore syntactically correct elements which fall outside their
constraint will not be rejected.

l Default attributes in attribute-list declarations will not be automatically
added to elements.

l Conditional sections will always be ignored.
l Only standard, predefined, entity references will be recognized; entity
declarations which define others entity references will have no effect.

l External entities are not processed.

Conversion from XML
l The level number in the first column of the result R is 0 for the outermost
level and subsequent levels are represented by an increase of 1 for each
level. Thus, for

l <xml><document id="001">An introduction to XML </document></xml>
l The xml element is at level 0 and the document id element is at level 1. The
text within the document id element is at level 2.

l Each tag in the XML contains an element name and zero or more attribute
name and value pairs, delimited by '<' and '>' characters. The delimiters are
not included in the result matrix. The element name of a tag is stored in
column 2 and the attribute(s) in column 4.

l All XML markup other than tags are delimited by either '<!' and '>', or '<?'
and '>' characters. By default these are not stored in the result matrix but the
markup option may be used to specify that they are. The elements are
stored in their entirety, except for the leading and trailing '<' and '>'
characters, in column 2. Nested constructs are treated as a single block.
Because the leading and trailing '<' and '>' characters are stripped, such
entries will always have either '!' or '&' as the first character.

l Character data itself has no tag name or attributes. As an optimisation, when
character data is the sole content of an element, it is included with its parent
rather than as a separate row in the result. Note that when this happens, the
level number stored is that of the parent; the data itself implicitly has a
level number one greater.

Chapter 4: System Functions 616

l Attribute name and value pairs associated with the element name are stored
in the fourth column, in an (n x 2) matrix of character values, for the n
(including zero) pairs.

l Each row is further described in the fifth column as a convenience to
simplify processing of the array (although this information could be
deduced). Any given row may contain an entry for an element, character
data, markup not otherwise defined, a comment or a processing instruction.
Furthermore, an element will have zero or more of these as children. For all
types except elements, the value in the fifth column is as shown above. For
elements, the value is computed by adding together the value of the row
itself (1) and those of its children. For example, the value for a row for an
element which contains one or more sub-elements and character data is 7 –
that is 1 (element) + 2 (child element) + 4 (character data). It should be
noted that:

l Odd values always represent elements. Odd values other than 1 indicate that
there are children.

l Elements which contain just character data (5) are combined into a single
row as noted previously.

l Only immediate children are considered when computing the value. For
example, an element which contains a sub-element which in turn contains
character data does not itself contain the character data.

l The computed value is derived from what is actually preserved in the array.
For example, if the source XML contains an element which contains a
comment, but comments are being discarded, there will be no entry for the
comment in the array and the fifth column for the element will not indicate
that it has a child comment.

Conversion to XML
Conversion to XML takes an array with the format described above and generates
XML text from it. There are some simplifications to the array which are accepted:

l The fifth column is not needed for XML generation and is effectively
ignored. Any numeric values are accepted, or the column may be omitted
altogether. If the fifth column is omitted then the fourth column may also be
omitted.

l For the fourth column, if there are no attributes in a particular row then the
(0 2⍴⊂'') may be abbreviated as ⍬ (zilde). If there is only one attribute
then a 2-element vector can be specified.

l Data in the third column and attribute values in the fourth column (if
present) may be provided as either character vectors or numeric values.
Numeric values are implicitly formatted as if ⎕PP was set to 17.

Chapter 4: System Functions 617

The following validations are performed on the data in the array:

l All elements within the array are checked for type.
l Values in column 1 must be non-negative and start from level 0, and the
increment from one row to the next must be ≤ +1.

l Tag names in column 2 and attribute names in column 4 (if present) must
conform to the XML name definition.

Then, character references and entity references are emitted in place of characters
where necessary, to ensure that valid XML is generated. However, markup, if present,
is not validated and it is possible to generate invalid XML if care in not taken with
markup constructs.

Options
There are 3 options which may be specified using the Variant operator ⍠
(recommended) or by the optional left argument X (retained for backwards
compatibility). The names are different and are case-sensitive; they must be spelled
exactly as shown below.

Option names for Variant Option names for left argument

Whitespace whitespace

Markup markup

UnknownEntity unknown-entity

The values of each option are tabulated below. In each case the value of the option
for Variant is given first, followed by its equivalent for the optional left argument in
brackets; e.g.UnknownEntity (unknown-entity).

Note that the default value is shown first, and that the option names and values are
case-sensitive.

If options are specified using the optional left argument, X specifies a set of
option/value pairs, each of which is a character vector. Xmay be a 2-element vector,
or a vector of 2-element character vectors. In the examples below, this method is
illustrated by the equivalent expression written as a comment, following the
recommended approach using the Variant operator ⍠. i.e.

]display (⎕XML⍠'Whitespace' 'Strip')eg
⍝ 'whitespace' 'strip' ⎕XML eg

Errors detected in the input arrays or options will all cause DOMAIN ERROR.

Chapter 4: System Functions 618

Whitespace (whitespace)
When converting fromXML Whitespace specifies the default handling of white
space surrounding and within character data. When converting to XML
Whitespace specifies the default formatting of the XML. Note that attribute values
are not comprised of character data so white space in attribute values is always
preserved.

Converting from XML

Strip
(strip)

All leading and trailing whitespace sequences are removed;
remaining whitespace sequences are replaced by a single
space character

Trim
(trim)

All leading and trailing whitespace sequences are removed;
all remaining white space sequences are handled as preserve

Preserve
(preserve)

Whitespace is preserved as given except that line endings are
represented by Linefeed (⎕UCS 10)

Converting to XML

Strip
(strip)

All leading and trailing whitespace sequences are removed;
remaining whitespace sequences within the data are replaced
by a single space character. XML is generated with
formatting and indentation to show the data structure

Trim
(trim)

Synonymous with strip

Preserve
(preserve)

White space in the data is preserved as given, except that line
endings are represented by Linefeed (⎕UCS 10). XML is
generated with no formatting and indentation other than that
which is contained within the data

Chapter 4: System Functions 619

]display eg
┌→───────────────────┐
│<xml> │
│ <a> │
│ Data1 │
│ <!-- Comment -->│
│ Data2 │
│ Data3 │
│ Data4 │
│ <c att="val"/> │
│ │
│</xml> │
└────────────────────┘

]display (⎕XML⍠'Whitespace' 'Strip')eg
⍝ 'whitespace' 'strip' ⎕XML eg

┌→──┐
↓ ┌→──┐ ┌⊖┐ ┌→────────┐ │
│ 0 │xml│ │ │ ⌽ ┌⊖┐ ┌⊖┐ │ 3 │
│ └───┘ └─┘ │ │ │ │ │ │ │
│ │ └─┘ └─┘ │ │
│ └∊────────┘ │
│ ┌→┐ ┌⊖┐ ┌→────────┐ │
│ 1 │a│ │ │ ⌽ ┌⊖┐ ┌⊖┐ │ 7 │
│ └─┘ └─┘ │ │ │ │ │ │ │
│ │ └─┘ └─┘ │ │
│ └∊────────┘ │
│ ┌⊖┐ ┌→──────────┐ ┌→────────┐ │
│ 2 │ │ │Data1 Data2│ ⌽ ┌⊖┐ ┌⊖┐ │ 4 │
│ └─┘ └───────────┘ │ │ │ │ │ │ │
│ │ └─┘ └─┘ │ │
│ └∊────────┘ │
│ ┌→┐ ┌→────┐ ┌→────────┐ │
│ 2 │b│ │Data3│ ⌽ ┌⊖┐ ┌⊖┐ │ 5 │
│ └─┘ └─────┘ │ │ │ │ │ │ │
│ │ └─┘ └─┘ │ │
│ └∊────────┘ │
│ ┌⊖┐ ┌→────┐ ┌→────────┐ │
│ 2 │ │ │Data4│ ⌽ ┌⊖┐ ┌⊖┐ │ 4 │
│ └─┘ └─────┘ │ │ │ │ │ │ │
│ │ └─┘ └─┘ │ │
│ └∊────────┘ │
│ ┌→┐ ┌⊖┐ ┌→────────────┐ │
│ 2 │c│ │ │ ↓ ┌→──┐ ┌→──┐ │ 1 │
│ └─┘ └─┘ │ │att│ │val│ │ │
│ │ └───┘ └───┘ │ │
│ └∊────────────┘ │
└∊──┘

Chapter 4: System Functions 620

]display (⎕XML⍠'Whitespace' 'Preserve')eg
⍝ 'whitespace' 'preserve' ⎕XML eg

┌→──────────────────────────────────────┐
↓ ┌→──┐ ┌⊖┐ ┌→────────┐ │
│ 0 │xml│ │ │ ⌽ ┌⊖┐ ┌⊖┐ │ 7 │
│ └───┘ └─┘ │ │ │ │ │ │ │
│ │ └─┘ └─┘ │ │
│ └∊────────┘ │
│ ┌⊖┐ ┌→─┐ ┌→────────┐ │
│ 1 │ │ │ │ ⌽ ┌⊖┐ ┌⊖┐ │ 4 │
│ └─┘ │ │ │ │ │ │ │ │ │
│ └──┘ │ └─┘ └─┘ │ │
│ └∊────────┘ │
│ ┌→┐ ┌⊖┐ ┌→────────┐ │
│ 1 │a│ │ │ ⌽ ┌⊖┐ ┌⊖┐ │ 7 │
│ └─┘ └─┘ │ │ │ │ │ │ │
│ │ └─┘ └─┘ │ │
│ └∊────────┘ │
│ ┌⊖┐ ┌→────────┐ ┌→────────┐ │
│ 2 │ │ │ │ ⌽ ┌⊖┐ ┌⊖┐ │ 4 │
│ └─┘ │ Data1│ │ │ │ │ │ │ │
│ │ │ │ └─┘ └─┘ │ │
│ │ Data2│ └∊────────┘ │
│ │ │ │
│ └─────────┘ │
│ ┌→┐ ┌→──────┐ ┌→────────┐ │
│ 2 │b│ │ Data3 │ ⌽ ┌⊖┐ ┌⊖┐ │ 5 │
│ └─┘ └───────┘ │ │ │ │ │ │ │
│ │ └─┘ └─┘ │ │
│ └∊────────┘ │
│ ┌⊖┐ ┌→────────┐ ┌→────────┐ │
│ 2 │ │ │ │ ⌽ ┌⊖┐ ┌⊖┐ │ 4 │
│ └─┘ │ Data4│ │ │ │ │ │ │ │
│ │ │ │ └─┘ └─┘ │ │
│ └─────────┘ └∊────────┘ │
│ ┌→┐ ┌⊖┐ ┌→────────────┐ │
│ 2 │c│ │ │ ↓ ┌→──┐ ┌→──┐ │ 1 │
│ └─┘ └─┘ │ │att│ │val│ │ │
│ │ └───┘ └───┘ │ │
│ └∊────────────┘ │
│ ┌⊖┐ ┌→─┐ ┌→────────┐ │
│ 2 │ │ │ │ ⌽ ┌⊖┐ ┌⊖┐ │ 4 │
│ └─┘ │ │ │ │ │ │ │ │ │
│ └──┘ │ └─┘ └─┘ │ │
│ └∊────────┘ │
│ ┌⊖┐ ┌→┐ ┌→────────┐ │
│ 1 │ │ │ │ ⌽ ┌⊖┐ ┌⊖┐ │ 4 │
│ └─┘ │ │ │ │ │ │ │ │ │
│ └─┘ │ └─┘ └─┘ │ │
│ └∊────────┘ │
└∊──────────────────────────────────────┘

Chapter 4: System Functions 621

Markup (markup)
When converting fromXML, Markup determines whether markup (other than entity
tags) appears in the output array or not. When converting to XML Markup has no
effect.

Converting from XML

Strip
(strip)

Markup data is not included in the output array

Preserve
(preserve)

Markup text appears in the output array, without the leading
'<' and trailing '>' in the tag (2nd) column

]display eg
┌→───────────────────┐
│<xml> │
│ <a> │
│ Data1 │
│ <!-- Comment -->│
│ Data2 │
│ Data3 │
│ Data4 │
│ <c att="val"/> │
│ │
│</xml> │
└────────────────────┘

Chapter 4: System Functions 622

]display (⎕XML⍠'Markup' 'Strip')eg
⍝ 'markup' 'strip' ⎕XML eg

┌→──┐
↓ ┌→──┐ ┌⊖┐ ┌→────────┐ │
│ 0 │xml│ │ │ ⌽ ┌⊖┐ ┌⊖┐ │ 3 │
│ └───┘ └─┘ │ │ │ │ │ │ │
│ │ └─┘ └─┘ │ │
│ └∊────────┘ │
│ ┌→┐ ┌⊖┐ ┌→────────┐ │
│ 1 │a│ │ │ ⌽ ┌⊖┐ ┌⊖┐ │ 7 │
│ └─┘ └─┘ │ │ │ │ │ │ │
│ │ └─┘ └─┘ │ │
│ └∊────────┘ │
│ ┌⊖┐ ┌→──────────┐ ┌→────────┐ │
│ 2 │ │ │Data1 Data2│ ⌽ ┌⊖┐ ┌⊖┐ │ 4 │
│ └─┘ └───────────┘ │ │ │ │ │ │ │
│ │ └─┘ └─┘ │ │
│ └∊────────┘ │
│ ┌→┐ ┌→────┐ ┌→────────┐ │
│ 2 │b│ │Data3│ ⌽ ┌⊖┐ ┌⊖┐ │ 5 │
│ └─┘ └─────┘ │ │ │ │ │ │ │
│ │ └─┘ └─┘ │ │
│ └∊────────┘ │
│ ┌⊖┐ ┌→────┐ ┌→────────┐ │
│ 2 │ │ │Data4│ ⌽ ┌⊖┐ ┌⊖┐ │ 4 │
│ └─┘ └─────┘ │ │ │ │ │ │ │
│ │ └─┘ └─┘ │ │
│ └∊────────┘ │
│ ┌→┐ ┌⊖┐ ┌→────────────┐ │
│ 2 │c│ │ │ ↓ ┌→──┐ ┌→──┐ │ 1 │
│ └─┘ └─┘ │ │att│ │val│ │ │
│ │ └───┘ └───┘ │ │
│ └∊────────────┘ │
└∊──┘

Chapter 4: System Functions 623

]display (⎕XML⍠'Markup' 'Preserve')eg
⍝ 'markup' 'preserve' ⎕XML eg

┌→──┐
↓ ┌→──┐ ┌⊖┐ ┌→────────┐ │
│ 0 │xml│ │ │ ⌽ ┌⊖┐ ┌⊖┐ │ 3 │
│ └───┘ └─┘ │ │ │ │ │ │ │
│ │ └─┘ └─┘ │ │
│ └∊────────┘ │
│ ┌→┐ ┌⊖┐ ┌→────────┐ │
│ 1 │a│ │ │ ⌽ ┌⊖┐ ┌⊖┐ │ 23 │
│ └─┘ └─┘ │ │ │ │ │ │ │
│ │ └─┘ └─┘ │ │
│ └∊────────┘ │
│ ┌⊖┐ ┌→────┐ ┌→────────┐ │
│ 2 │ │ │Data1│ ⌽ ┌⊖┐ ┌⊖┐ │ 4 │
│ └─┘ └─────┘ │ │ │ │ │ │ │
│ │ └─┘ └─┘ │ │
│ └∊────────┘ │
│ ┌→─────────────┐ ┌⊖┐ ┌→────────┐ │
│ 2 │!-- Comment --│ │ │ ⌽ ┌⊖┐ ┌⊖┐ │ 16 │
│ └──────────────┘ └─┘ │ │ │ │ │ │ │
│ │ └─┘ └─┘ │ │
│ └∊────────┘ │
│ ┌⊖┐ ┌→────┐ ┌→────────┐ │
│ 2 │ │ │Data2│ ⌽ ┌⊖┐ ┌⊖┐ │ 4 │
│ └─┘ └─────┘ │ │ │ │ │ │ │
│ │ └─┘ └─┘ │ │
│ └∊────────┘ │
│ ┌→┐ ┌→────┐ ┌→────────┐ │
│ 2 │b│ │Data3│ ⌽ ┌⊖┐ ┌⊖┐ │ 5 │
│ └─┘ └─────┘ │ │ │ │ │ │ │
│ │ └─┘ └─┘ │ │
│ └∊────────┘ │
│ ┌⊖┐ ┌→────┐ ┌→────────┐ │
│ 2 │ │ │Data4│ ⌽ ┌⊖┐ ┌⊖┐ │ 4 │
│ └─┘ └─────┘ │ │ │ │ │ │ │
│ │ └─┘ └─┘ │ │
│ └∊────────┘ │
│ ┌→┐ ┌⊖┐ ┌→────────────┐ │
│ 2 │c│ │ │ ↓ ┌→──┐ ┌→──┐ │ 1 │
│ └─┘ └─┘ │ │att│ │val│ │ │
│ │ └───┘ └───┘ │ │
│ └∊────────────┘ │
└∊──┘

Chapter 4: System Functions 624

UnknownEntity (unknown-entity)
When converting fromXML, this option determines what happens when an
unknown entity reference, or a character reference for a Unicode character which
cannot be represented as an APL character, is encountered. In Classic versions of
Dyalog APL that is any Unicode character which does not appear in ⎕AVU. When
converting to XML, this option determines what happens to Esc characters (⎕UCS
27) in data.

Converting from XML

Replace
(replace)

The reference is replaced by a single '?' character

Preserve
(preserve)

The reference is included in the output data as given, but
with the leading '&' replaced by Esc (⎕UCS 27)

Converting to XML

Replace
(replace)

Esc (⎕UCS 27) is preserved

Preserve
(preserve)

Esc (⎕UCS 27) is replaced by '&'

Chapter 4: System Functions 625

Extended State Indicator R←⎕XSI

R is a nested vector of character vectors giving the full path names of the functions or
operators in the execution stack. Note that if a function has changed space, its
original (home) space is reported, rather than its current one.

Example
In the following, function foo in namespace x has called goo in namespace y.
Function goo has then changed space (⎕CS) to namespace z where it has been
suspended:

)si
[z] y.goo[2]*
x.foo[1]

⎕XSI reports the full path name of each function:

⎕xsi
#.y.goo #.x.foo

This can be used for example, to edit all functions in the stack, irrespective of the
current namespace by typing: ⎕ed ⎕xsi

See also State Indicator on page 552.

Chapter 4: System Functions 626

Set External Variable {R}←X ⎕XT Y

Ymust be a simple character scalar or vector which is taken to be a variable name. X
must be a simple character scalar or vector which is taken to be a file reference. The
name given by Y is identified as an EXTERNAL VARIABLE associated with an
EXTERNAL ARRAY whose value may be stored in file identified by X. See User
Guide for file naming conventions underWindows and UNIX. The shy result R has
the same value as X.

If Y is the name of a defined function or operator, a label or a namespace in the active
workspace, a DOMAIN ERROR is reported.

Attempts to assign namespace references or the ⎕OR of namespaces to an external
array will result in a DOMAIN ERROR.

Example
'EXT\ARRAY' ⎕XT 'V'

If the file reference does not exist, the external variable has no value until a value is
assigned:

V
VALUE ERROR

V
^

A value assigned to an external variable is stored in file space, not within the
workspace:

⎕WA
2261186

V←⍳100000

⎕WA
2261186

There are no specific restrictions placed on the use of external variables. They must
conform to the normal requirements when used as arguments of functions or as
operands of operators. The essential difference between a variable and an external
variable is that an external variable requires only temporary workspace for an
operation to accommodate (usually) a part of its value.

Chapter 4: System Functions 627

Examples
V←⍳5
+/V

15

V[3]←⊂'ABC'

V
1 2 ABC 4 5

⍴¨V
3

Assignment allows the structure or the value of an external variable to be changed
without fully defining the external array in the workspace.

Examples
V,←⊂2 4⍴⍳8

⍴V
6

V[6]
1 2 3 4
5 6 7 8

V[1 2 4 5 6]×←10

V
10 20 ABC 40 50 10 20 30 40

50 60 70 80

An external array is (usually) preserved in file space when the name of the external
variable is disassociated from the file. It may be re-associated with any valid variable
name.

Example
⎕EX'V'

'EXT\ARRAY'⎕XT'F'

F
10 20 ABC 40 50 10 20 30 40

50 60 70 80

Chapter 4: System Functions 628

In UNIX versions, if X is an empty vector, the external array is associated with a
temporary file which is erased when the array is disassociated.

Example
''⎕XT'TEMP'

TEMP←⍳10

+/TEMP×TEMP
385

⎕EX'TEMP'

An external array may be erased using the native file function: ⎕NERASE.

In a multi-user environment (UNIX or a Windows LAN) a new file associated with
an external array is created with access permission for owner read/write. An existing
file is opened for exclusive use (by the owner) if the permissions remain at this level.
If the access permissions allow any other users to read and write to the file, the file is
opened for shared use. In UNIX versions, access permissions may be modified using
the appropriate Operating System command, or in Windows using the supplied
function XVAR from the UTIL workspace.

Query External Variable R←⎕XT Y

Ymust be a simple character scalar or vector which is taken to be a variable name. R
is a simple character vector containing the file reference of the external array
associated with the variable named by Y, or the null vector if there is no associated
external array.

Example
⎕XT'V'

EXT\ARRAY

⍴⎕XT'G'
0

Chapter 5: System Commands 629

Chapter 5:

System Commands

Introduction
System commands are not executable APL expressions. They provide services or
information associated with the workspace and the external environment.

Command Presentation
System commands may be entered from immediate execution mode or in response to
the prompt ⎕: within evaluated input. All system commands begin with the symbol
), known as a right parenthesis. All system commands may be entered in upper or
lower case.

Each command is described in alphabetical order in this chapter.

Table 22: System Commands
Command Description

)CLASSES List classes

)CLEAR Clear the workspace

)CMD Y Execute a Windows Command

)CONTINUE
Save a Continue workspace and terminate
APL

)COPY {Y} Copy objects from another workspace

)CS {Y} Change current namespace

)DROP {Y} Drop named workspace

)ED Y Edit object(s)

)ERASE Y Erase object(s)

)EVENTS List events of GUI namespace or object

Chapter 5: System Commands 630

Command Description

)FNS {Y} List user defined Functions

)HOLDS Display Held tokens

)LIB {Y} List workspaces in a directory

)LOAD {Y} Load a workspace

)METHODS List methods in GUI namespace or object

)NS {Y} Create a global Namespace

)OBJECTS {Y} List global namespaces

)OBS {Y} List global namespaces (alternative form)

)OFF Terminate the APL session

)OPS {Y} List user defined Operators

)PCOPY {Y} Perform Protected Copy of objects

)PROPS List properties of GUI namespace or object

)RESET Reset the state indicator

)SAVE {Y} Save the workspace

)SH {Y} Execute a (UNIX) Shell command

)SI State Indicator

)SIC Clear State Indicator

)SINL State Indicator with local Name Lists

)TID {Y} Switch current Thread Identity

)VARS {Y} List user defined global Variables

)WSID {Y} Workspace Identification

)XLOAD Y Load a workspace; do not execute ⎕LX

{ } indicates that the parameter(s) denoted by Y are optional.

Chapter 5: System Commands 631

System Commands (A-Z)
The remainder of this chapter describes the system commands one-by-one in
alphabetical order.

List Classes)CLASSES

This command lists the names of APL Classes in the active workspace.

Example:
)CLEAR

clear ws
)ED ○MyClass

:Class MyClass
∇ Make Name

:Implements Constructor
⎕DF Name

∇
:EndClass ⍝ MyClass

)CLASSES
MyClass

)COPY OO YourClass
.\OO saved Sun Jan 29 18:32:03 2006

)CLASSES
MyClass YourClass

⎕NC 'MyClass' 'YourClass'
9.4 9.4

Clear Workspace)CLEAR

This command clears the active workspace and gives the report "clear ws". The
active workspace is lost. The name of a clear workspace is CLEAR WS. System
variables are initialised with their default values as described in System Variables on
page 262.

In GUI implementations of Dyalog APL,)CLEAR expunges all GUI objects,
discards any unprocessed events in the event queue and resets the properties of the
Root object '.' to their default values.

Example
)CLEAR

clear ws

Chapter 5: System Commands 632

Windows Command Processor)CMD cmd

This command allowsWindows Command Processor or UNIX shell commands to be
given fromAPL.)CMD is a synonym of)SH. Either command may be given in
either environment (Windows or UNIX) with exactly the same effect.)CMD is
probably more natural for the Windows user. This section describes the behaviour of
)CMD and)SH underWindows. See Execute (UNIX) Command on page 651 for a
discussion of the behaviour of these commands under UNIX.

The system functions ⎕SH and ⎕CMD provide similar facilities but may be executed
fromwithin APL code. For further information, see Execute (UNIX) Command on
page 549 and Execute Windows Command on page 295.

Note that underWindows, you may not execute)CMD without a command. If you
wish to, you can easily open a new Command Prompt window outside APL.

Example
)cmd dir

Volume in drive C is OS
Volume Serial Number is B438-9B76

Directory of C:\Users\Pete\Documents\Dyalog APL-64 17.0
Unicode Files

23/06/2018 15:59 <DIR> .
23/06/2018 15:59 <DIR> ..
23/06/2018 14:53 181,488 default.dlf
13/06/2018 20:13 1,262,296 def_uk.dse
14/06/2018 14:36 108,976 UserCommand20.cache

3 File(s) 1,552,760 bytes
2 Dir(s) 101,371,437,056 bytes free

If cmd issues prompts and expects user input, it is ESSENTIAL to explicitly redirect
input and output to the console. If this is done, APL detects the presence of a ">" in
the command line and runs the command processor in a visible window and does not
direct output to the pipe. If you fail to do this your system will appear to hang
because there is no mechanism for you to receive or respond to the prompt.

Example
)CMD DATE <CON >CON

(Command Prompt window appears)

Current date is Wed 19-07-1995
Enter new date (dd-mm-yy): 20-07-95

(Command Prompt window disappears)

Chapter 5: System Commands 633

Implementation Notes
The argument of)CMD is simply passed to the appropriate command processor for
execution and its output is received using an unnamed pipe.

By default,)CMD will execute the string ('cmd.exe /c',Y) where Y is the
argument given to)CMD. However, the implementation permits the use of
alternative command processors as follows:

Before execution, the argument is prefixed and postfixed with strings defined by the
APL parameters CMD_PREFIX and CMD_POSTFIX. The former specifies the name
of your command processor and any parameters that it requires. The latter specifies a
string which may be required. If CMD_PREFIX is not defined, it defaults to the name
defined by the environment variable COMSPEC followed by "\c". If COMSPEC is
not defined, it defaults to COMMAND.COM or CMD.EXE as appropriate. If CMD_
POSTFIX is not defined, it defaults to an empty vector.

Note:
This function is disabled and instead generates a DOMAIN ERROR if the RIDE_
SPAWNED parameter is non-zero. This is designed to prevent it being invoked from
a RIDE session which does not support this type of user interface. For further details,
see the RIDE User Guide.

Save Continuation)CONTINUE

This command saves the active workspace in the current working directory and ends
the Dyalog APL session. The name of the workspace file is CONTINUE in upper-
case with the extension defined by theWSEXT parameter. See Installation &
Configuration Guide: Configuration Parameters.

Note that the values of all system variables (including ⎕SM) and GUI objects are also
saved in CONTINUE.

When a CONTINUE workspace is loaded, the latent expression (if any) is NOT
executed.

Chapter 5: System Commands 634

Copy Workspace)COPY {ws {nms}}

This command brings all or selected global objects nms from a stored workspace (or
session file) with the given name. A stored workspace is one which has previously
been saved with the system command)SAVE or the system function ⎕SAVE.

 See Programming Reference Guide: Workspaces for the rules for specifying a
workspace name.

If the list of names is excluded, all defined objects (including namespaces) are
copied.

If the workspace name identifies a valid, readable workspace, the system reports the
workspace name, "saved" and the date and time when the workspace was last saved.

Examples
)COPY WS/UTILITY

WS/UTILITY saved Mon Nov 1 13:11:19 1992

)COPY TEMP ⎕LX FOO X A.B.C
./TEMP saved Mon Nov 1 14:20:47 1992
not found X

Copied objects are defined at the global level in the active workspace. Existing
global objects in the active workspace with the same name as a copied object are
replaced. If the copied object replaces either a function in the state indicator, or an
object that is an operand of an operator in the state indicator, or a function whose left
argument is being executed, the original object remains defined until its execution is
completed or it is no longer referenced by an operator in the state indicator. If the
workspace name is not valid or does not exist or if access to the workspace is not
authorised, the system reports ws not found.

You may copy an object from a namespace by specifying its full pathname. The
object will be copied to the current namespace in the active workspace, losing its
original parent and gaining a new one in the process. You may only copy a GUI
object into a namespace that is a suitable parent for that object. For example, you
could only copy a Group object from a saved workspace if the current namespace in
the active workspace is itself a Form, SubForm or Group.

If the workspace name identifies a file that is not a workspace, the system reports bad
ws.

If the source workspace is too large to be loaded, the system reports ws too
large.

Chapter 5: System Commands 635

When copying data between Classic and Unicode Editions,)COPY will fail with
TRANSLATION ERROR if any object in the source workspace fails conversion
between Unicode and ⎕AV indices, whether or not that object is specified by nms.
See Atomic Vector - Unicode on page 288 for further details.

If "ws" is omitted, the file open dialog box is displayed and all objects copied from
the selected workspace.

If the list of names is included, the names of system variables may also be included
and copied into the active workspace. The global referents will be copied.

If an object is not found in the stored workspace, the system reports not found
followed by the name of the object.

Dependant Objects
If the list of names includes the name of:

l an Instance of a Class but not the Class itself
l a Class but not a Class upon which it depends
l an array or a namespace that contains a ref to another namespace, but not
the namespace to which it refers

the dependant object(s)will also be copied but will be unnamed and hidden. In such
as case, the system will issue a warning message.

For example, if a saved workspace named CFWS contains a Class named
#.CompFile and an Instance (of CompFile) named icf,

)COPY CFWS icf
.\CFWS saved Fri Mar 03 10:21:36 2006
copied object created an unnamed copy of class #.CompFile

The existence of a hidden copy can be confusing, especially if it is a hidden copy of
an object which had a name which is in use in the current workspace. In the above
example, if there is a class called CompFile in the workspace into which icf is
copied, the copied instance may appear to be an instance of the visible CompFile,
but it will actually be an instance of the hidden CompFile - which may have very
different (or perhaps worse: very slightly different) characteristics to the named
version.

If you copy a Class without copying its Base Class, the Class can be used (it will use
the invisible copy of the Base Class), but if you edit the Class, you will either be
unable to save it because the editor cannot find the Base Class, or - if there is a visible
Class of that name in the workspace - it will be used as the Base Class.

Chapter 5: System Commands 636

In the latter case, the invisible copy which was brought in by)COPY will now
disappear, since there are no longer any references to it - and if these two Base
Classes were different, the behaviour of the derived Class will change (and any
changes made to the invisible Base Class since it was copied will be lost).

Referenced Objects
If you copy a Class or a namespace that is referenced by a Class as its Base Class or
via a :Include statement, the referring Class will continue to refer to the original
definition of the copied name which will be retained for that purpose. The Class can
be made to refer to the copied definition of that name by refixing it.

Example
The current workspace has a class named pete whose Base class is called base.

:Class pete: base
:EndClass

:Class base
∇ r←foo n

:Access Public
r←'Original'n

∇
:EndClass

A second workspace named copy.dws contains a different version of the base
class:

:Class base
∇ r←foo n

:Access Public
r←'Copied'n

∇
:EndClass

)copy copy.dws base
copy.dws saved Thu Nov 22 16:24:27 2018

inst←⎕NEW pete
inst.foo 1

Original 1

⎕FIX ⎕SRC pete
inst←⎕NEW pete
inst.foo 1

Copied 1

Chapter 5: System Commands 637

Copying Objects from Session Files
You may also copy objects from session (.dse) files, although with certain
restrictions.

Example:
)copy C:\Users\Pete\Desktop\pete.dse ⎕SE.UCMD

C:\Users\Pete\Desktop\pete.dse saved Wed Oct 14 ...

l You can copy a function or variable from any namespace under a saved
⎕SE, no matter what your current namespace is.

l You can copy any namespace without GUI from a saved ⎕SE, no matter
what you current namespace is.

l You can copy any namespace with GUI from a saved ⎕SE as long as your
current namespace is the same as the parent namespace of the namespace
you are trying to copy

Examples:
In the following example, the not copied cases occur because the current namespace
is not an appropriate parent for the object in question.

)CS #
#

)copy C:\Users\...\pete.dse ⎕SE.Dyalog.Callbacks
C:\Users\...\pete.dse saved Wed Oct 14 15:31:14 2015

)copy C:\Users\...\pete.dse ⎕SE.cbbot
C:\Users\...\pete.dse saved Wed Oct 14 15:31:14 2015
not copied cbbot

)CS ⎕SE
⎕SE

)copy C:\Users\...\pete.dse ⎕SE.cbbot
C:\Users\...\pete.dse saved Wed Oct 14 15:31:14 2015

)copy C:\Users\...\pete.dse ⎕SE.cbbot.bandsb1
C:\Users\...\pete.dse saved Wed Oct 14 15:31:14 2015
not copied bandsb1

Chapter 5: System Commands 638

Change Space)CS {nm}

)CS changes the current space to the global namespace nm.

If no nm is given, the system changes to the top level (Root) namespace. If nm is not
the name of a global namespace, the system reports the error message Namespace
does not exist.

namemay be either a simple name or a compound name separated by '.', including
one of the special names '#' (Root) or '##' (Parent).

Examples
)CS

#
)CS X

#.X
)CS Y.Z

#.X.Y.Z
)CS ##

#.X.Y
)CS #.UTIL

#.UTIL

Drop Workspace)DROP {ws}

This command removes the specified workspace from disk storage.

See Programming Reference Guide: Workspaces for the rules for specifying a
workspace name.

If ws is omitted, a file open dialog box is displayed to elicit the workspace name.

Example
)DROP WS/TEMP

Thu Sep 17 10:32:18 1998

Chapter 5: System Commands 639

Edit Object)ED nms

)ED invokes the Dyalog APL editor and opens an Edit window for each of the
objects specified in nms.

If a name includes the slash character ("\" or "/") it is taken to be the name of a file.
See UI Guide: Editing Scripts and Text Files.

If a name specifies a new symbol it is taken to be a function or operator. However, if
a name is localised in a suspended function or operator but is otherwise undefined, it
is assumed to be a vector of character vectors.

The type of a new object may be specified explicitly by preceding its name with an
appropriate symbol as follows:

∇ function or operator

→ simple character vector

∊ vector of character vectors

- character matrix

⍟ Namespace script

○ Class script

∘ Interface

The first object named becomes the top window on the stack. See the Dyalog for
Microsoft Windows UI Guide or the Dyalog for UNIX UI Guide for details.

Examples
)ED MYFUNCTION

)ED ∇FOO -MAT ∊VECVEC

Objects specified in nms that cannot be edited are silently ignored. Objects qualified
with a namespace path are (e.g. a.b.c.foo) are silently ignored if the namespace
does not exist.

Chapter 5: System Commands 640

Erase Object)ERASE nms

This command erases named global defined objects (functions, operators, variables,
namespaces and GUI objects) from the active workspace or current namespace.

If a named object is a function or operator in the state indicator, or the object is an
operand of an operator in the state indicator, or the object is a function whose left
argument is being executed, the object remains defined until its execution is
completed or it is no longer referenced by an operator in the state indicator.
However, the name is available immediately for other uses.

If a named object is a GUI object, the object and all its children are deleted and
removed from the screen.

If an object is not erased for any reason, the system reports not found followed
by the name of the object.

Erasing objects such as external functions may have other implications: see Expunge
Object on page 343 for details.

Example
)ERASE FOO A ⎕IO

not found ⎕IO

List Events)EVENTS

The)EVENTS system command lists the Events that may be generated by the object
associated with the current space.

For example:

⎕CS 'BB' ⎕WC 'BrowseBox'

)EVENTS
Close Create FileBoxCancel FileBoxOK

)EVENTS produces no output when executed in a pure (non-GUI) namespace, for
example:

⎕CS 'X' ⎕NS ''
)EVENTS

Chapter 5: System Commands 641

List Global Defined Functions)FNS {nm}

This command displays the names of global defined functions in the active
workspace or current namespace. Names are displayed in ⎕AV collation order. If a
name is included after the command, only those names starting at or after the given
name in collation order are displayed.

Examples
)FNS

ASK DISPLAY GET PUT ZILCH
)FNS G

GET PUT ZILCH

Chapter 5: System Commands 642

Display Held Tokens)HOLDS

System command)HOLDS displays a list of tokens which have been acquired or
requested by the :Hold control structure.

Each line of the display is of the form:

token: acq req req ...

Where acq is the number of the thread that has acquired the token, and req is the
number of a thread which is requesting it. For a token to appear in the display, a
thread (and only one thread) must have acquired it, whereas any number of threads
can be requesting it.

Example
Thread 300’s attempt to acquire token 'blue' results in a deadlock:

300:DEADLOCK
Sema4[1] :Hold 'blue'

^

)HOLDS
blue: 100
green: 200 100
red: 300 200 100

l Blue has been acquired by thread 100.
l Green has been acquired by 200 and requested by 100.
l Red has been acquired by 300 and requested by 200 and 100.

The following cycle of dependencies has caused the deadlock:

Thread 300 attempts to acquire blue, 300 → blue
which is owned by 100, ↑ ↓
which is waiting for red, red ← 100
which is owned by 300.

Chapter 5: System Commands 643

List Workspace Library)LIB {dir}

This command lists the names of Dyalog APL workspaces contained in the given
directory.

Example
)LIB WS

MYWORK TEMP

If a directory is not given, the workspaces on the user's APL workspace path
(WSPATH) are listed. In this case, the listing is divided into sections identifying the
directories concerned. The current directory is identified as ".".

Example
)LIB

.
PDTEMP WORK GRAPHICS

c:\Dyalog\ws
display groups

Chapter 5: System Commands 644

Load Workspace)LOAD {ws}

This command causes the named stored workspace to be loaded. The current active
workspace is lost.

See Programming Reference Guide: Workspaces for the rules for specifying a
workspace name.

If ws is a full or relative pathname, only the specified directory is examined. If not,
the APL workspace path (WSPATH) is traversed in search of the named workspace. A
stored workspace is one which has previously been saved with the system command
)SAVE or the system function ⎕SAVE. UnderWindows, if ws is omitted, the File
Open dialog box is displayed.

If the workspace name is not valid or does not exist or if access to the workspace is
not authorised, the system reports ws not found. If the workspace name
identifies a file or directory that is not a workspace, the system reports workspace
name is not a ws. If successfully loaded, the system reports workspace name
saved, followed by the date and time when the workspace was last saved. If the
workspace is too large to be loaded into the APL session, the system reports ws too
large. After loading the workspace, the current namespace is set to # and the latent
expression (⎕LX) is executed unless APL was invoked with the -x option. If the
workspace was saved with a suspension, typing the expression →1+⎕lc will resume
execution and switch back into the namespace associated with the suspended
function.

If the workspace contains any GUI objects whose Visible property is 1, these
objects will be displayed. If the workspace contains a non-empty ⎕SM but does not
contain an SM GUI object, the form defined by ⎕SM will be displayed in a window
on the screen.

Holding the Ctrl key down while entering a)LOAD command or selecting a
workspace from the session file menu now causes the incoming latent expression to
be traced.

Holding the Shift key down while selecting a workspace from the session file menu
will prevent execution of the latent expression.

Example
)load dfns

C:\Program Files\Dyalog\Dyalog APL-64 15.0
Unicode\ws\dfns.dws saved Thu Jul 28 17:25:28 2016

An assortment of D Functions and Operators.

tree # ⍝ Workspace map.
↑¯10↑↓attrib ⎕nl 3 4 ⍝ What's new?
notes find 'Word' ⍝ Apropos "Word".

Chapter 5: System Commands 645

List Methods)METHODS

The)METHODS system command lists the Methods that apply to the object
associated with the current space.

For example:

⎕CS 'F' ⎕WC 'Form'
)METHODS

Animate ChooseFont Detach GetFocus GetTextSize Wait

)METHODS produces no output when executed in a pure (non-GUI) namespace, for
example:

⎕CS 'X' ⎕NS ''
)METHODS

Create Namespace)NS {nm}

)NS creates a global namespace and displays its full name, nm.

nmmay be either a simple name or a compound name separated by '.', including
one of the special names '#' (Root) or '##' (Parent).

If name does not start with the special Root space identifier '#', the new namespace
is created relative to the current one.

If name is already in use for a workspace object other than a namespace, the
command fails and displays the error message Name already exists.

If name is an existing namespace, no change occurs.

)NS with no nm specification displays the current namespace.

Examples
)NS

#

)NS W.X
#.W.X

)CS W.X
#.W.X

)NS Y.Z
#.W.X.Y.Z

)NS
#.W.X

Chapter 5: System Commands 646

List Global Namespaces)OBJECTS {nm}

This command displays the names of global namespaces in the active workspace.
Names are displayed in the ⎕AV collating order. If a name is included after the
command, only those names starting at or after the given name in collating order are
displayed. Namespaces are objects created using ⎕NS,)NS or ⎕WC and have name
class 9.

Note:)OBS can be used as an alternative to)OBJECTS

Examples
)OBJECTS

FORM1 UTIL WSDOC XREF

)OBS W
WSDOC XREF

List Global Namespaces)OBS {nm}

This command is the same as the)OBJECTS command. See List Global
Namespaces on page 646

Sign Off APL)OFF

This command terminates the APL session, returning to the Operating System
command processor or shell.

List Global Defined Operators)OPS {nm}

This command displays the names of global defined operators in the active
workspace or current namespace. Names are displayed in ⎕AV collation order. If a
name is included after the command, only those names starting at or after the given
name in collation order are displayed.

Examples
)OPS

AND DOIF DUAL ELSE POWER

)OPS E
ELSE POWER

Chapter 5: System Commands 647

Protected Copy)PCOPY {ws {nms}}

This command brings all or selected global objects from a stored workspace with the
given name provided that there is no existing global usage of the name in the active
workspace. A stored workspace is one which has previously been saved with the
system command)SAVE or the system function ⎕SAVE.

)PCOPY does not copy ⎕SM. This restriction may be removed in a later release.

If the workspace name is not valid or does not exist or if access to the workspace is
not authorised, the system reports "ws not found". If the workspace name
identifies a file that is not a workspace, or is a workspace with an invalid version
number (one that is greater than the version of the current APL) the system reports
"bad ws".

See Programming Reference Guide: Workspaces for the rules for specifying a
workspace name.

If the workspace name is the name of a valid, readable workspace, the system reports
the workspace name, "saved", and the date and time that the workspace was last
saved.

If the list of names is excluded, all global defined objects (functions and variables)
are copied. If an object is not found in the stored workspace, the system reports "not
found" followed by the name of the object. If an object cannot be copied into the
active workspace because there is an existing referent, the system reports "not
copied" followed by the name of the object.

For further information, see Copy Workspace on page 320.

Examples
)PCOPY WS/UTILITY

WS/UTILITY saved Mon Nov 1 13:11:19 1993
not copied COPIED IF
not copied COPIED JOIN

)PCOPY TEMP FOO X
./TEMP saved Mon Nov 1 14:20:47 1993
not found X

Warning
If a workspace full condition occurs during the execution of)PCOPY the state of the
active workspace is unpredictable.

Chapter 5: System Commands 648

List Properties)PROPS

The)PROPS system command lists the Properties of the object associated with the
current space.

For example:

⎕CS 'BB' ⎕WC 'BrowseBox'

)PROPS
BrowseFor Caption ChildList Data Event
EventList HasEdit KeepOnClose MethodList
PropList StartIn Target Translate Type

)PROPS produces no output when executed in a pure (non GUI) namespace, for
example:

⎕CS 'X' ⎕NS ''
)PROPS

Reset State Indicator)RESET {n}

This command cancels all suspensions recorded in the state indicator and discards
any unprocessed events in the event queue.

The optional parameter n specifies that only the top n suspensions are to be cleared.

)RESET also performs an internal re-organisation of the workspace and process
memory. SeeWorkspace Available on page 601 for details.

Example
)SI

#.FOO[1]*
⍎
#.FOO[1]*

)RESET

)SI

Chapter 5: System Commands 649

Save Workspace)SAVE {-force} {ws}

This command compacts (seeWorkspace Available on page 601 for details) and
saves the active workspace.

If specified, ws is a full or relative path name to the file in which the workspace will
be written. If ws is omitted, it defaults to ⎕WSID. Unless the path specified by ws or
⎕WSID is a full pathname, it is taken to be relative to the current working directory
which may be obtained by the expression: ⊃1 ⎕NPARTS ''.

If ws specifies a file name other than that implied by ⎕WSID, the specified file must
not already exist unless the force parameter is specified.. If ws is omitted or resolves
to the same file as ⎕WSID, an existing stored workspace with the same name will be
replaced.

See Programming Reference Guide: Workspaces for the rules for specifying a
workspace name.

If an extension is not specified, an extension is added according to theWSEXT
parameter. See Installation & Configuration Guide: Configuration Parameters.

A workspace may not be saved if any threads (other than the root thread 0) are
running or if there are any Edit or Trace windows open. Otherwise, the workspace is
saved with its state of execution intact, however certain operations may be performed
before it is saved. For further information, see Set Workspace Save Options on page
237.

Chapter 5: System Commands 650

)SAVEmay fail with one of the following error messages:

unacceptable char
The given workspace name was
ill-formed

not saved this ws is WSID

An attempt was made to change
the name of the workspace for the
save, and the renamed workspace
already existed. This error can be
overridden by specifying -force.

not saved this ws is CLEAR WS
The active workspace was CLEAR
WS and no attempt was made to
change the name.

Can't save - file could not
be created.

The workspace name supplied did
not represent a valid file name for
the current Operating System.

cannot create

The user does not have access to
create the file OR the workspace
name conflicts with an existing
non-workspace file.

cannot save with windows open
A workspace may not be saved if
trace or edit windows are open.

After a successful save, the system reports the workspace name, followed by the word
"saved" and the current time and date; and if ws specified a new name, ⎕WSID is
assigned that name.

Example
)SAVE MYWORK

./MYWORK saved Thu Sep 17 10:32:20 1998

Note that any time prior to executing)SAVE, the active workspace may be renamed
by the system command)WSID or by assigning a name to the system variable
⎕WSID.

A stored workspace may subsequently be loaded with the system command)LOAD
or the system function ⎕LOAD, and objects may be copied from a stored workspace
with the system commands)COPY or)PCOPY or the system function ⎕CY.

Chapter 5: System Commands 651

Execute (UNIX) Command)SH {cmd}

This command allowsWINDOWS or UNIX shell commands to be given fromAPL.
)SH is a synonym of)CMD. Either command may be given in either environment
(Windows or UNIX) with exactly the same effect.)SH is probably more natural for
the UNIX user. This section describes the behaviour of)SH and)CMD under UNIX.
SeeWindows Command Processor on page 632 for a discussion of their behaviour
underWindows.

The system functions ⎕SH and ⎕CMD provide similar facilities but may be executed
fromwithin APL code. For further information, see Execute (UNIX) Command on
page 549 and Execute Windows Command on page 295.

)SH allows UNIX shell commands to be given fromAPL. The argument must be
entered in the appropriate case (usually lower-case). The result of the command, if
any, is displayed.

)SH causes Dyalog APL to invoke the system() library call. The shell which is
used to run the command is therefore the shell which system() is defined to call.
For example, under AIX this would be /usr/bin/sh.

When the shell is closed, control returns to APL. See Dyalog for UNIX UI Guide for
further information.

The parameters CMD_PREFIX and CMD_POSTFIX may be used to execute a
different shell under the shell associated with system().

Example
)sh ps -u andys | grep -v ps

UID PID TTY TIME CMD
6179 9437326 pts/0 0:00 ksh
6179 10223736 pts/0 0:00 dyalog
6179 10354810 pts/0 0:00 sh
6179 10879188 pts/0 0:00 ksh
6179 11665660 - 0:00 sshd

Note:
This function is disabled and instead generates a DOMAIN ERROR if the RIDE_
SPAWNED parameter is non-zero. This is designed to prevent it being invoked from
a RIDE session which does not support this type of user interface. For further details,
see the RIDE User Guide.

Chapter 5: System Commands 652

State Indicator)SI {n} {-tid=tn}

This command displays the contents of the state indicator in the active workspace.
The state indicator identifies those operations which are suspended or pendent for
each suspension.

The optional parameter n specifies that only the first n or last ¯n lines of the output
should be displayed.

The optional parameter -tid=tn specifies that the state indicator is to be displayed
only for thread number tn.

The list consists of a line for each suspended or pendent operation beginning with
the most recently suspended function or operator. Each line may be:

l The name of a defined function or operator, followed by the line number at
which the operation is halted, and followed by the * symbol if the
operation is suspended. The name of the function or operator is its full
pathname relative to the root namespace #. For example, #.UTIL.PRINT.
In addition, the display of a function or operator which has dynamically
changed space away from its origin is prefixed with its current space. For
example, [⎕SE] TRAV.

l A primitive operator symbol.
l The Execute function symbol (⍎).
l The Evaluated Input symbol (⎕).
l The System Function ⎕DQ or ⎕SR (occurs when executing a callback
function).

Examples
)SI

#.PLUS[2]*
.
#.MATDIV[4]
#.FOO[1]*
⍎

This example indicates that at some point function FOO was executed and suspended
on line 1. Subsequently, function MATDIV was invoked, with a function derived
from the Inner Product or Outer Product operator (.) having defined function PLUS
as an operand.

In the following, function foo in namespace x has called goo in namespace y.
Function goo has then changed space (⎕CS) to namespace z where it has been
suspended:

)SI
[z] y.goo[2]*
x.foo[1]

Chapter 5: System Commands 653

Threads
In a multi-threading application, where parent threads spawn child threads, the state
indicator assumes the structure of a branching tree. Branches of the tree are
represented by indenting lines belonging to child threads. For example:

)SI
· #.Calc[1]
&5
· · #.DivSub[1]
· &7
· · #.DivSub[1]
· &6
· #.Div[2]*
&4
#.Sub[3]
#.Main[4]

Here, Main has called Sub, which has spawned threads 4 and 5 with functions: Div
and Calc. Function Div, after spawning DivSub in each of threads 6 and 7, has
been suspended at line [2].

The state indicator for a particular thread tnmay be displayed by specifying the
parameter -tid=tn.

⎕←foo&¨10 10 10 10
┌→─────────┐
│9 10 11 12│
└~─────────┘

)si
· #.foo[1]
&9
· #.foo[1]
&10
· #.foo[1]
&11
· #.foo[1]
&12

)si -tid=11
#.foo[1]

Chapter 5: System Commands 654

Clear State Indicator)SIC

This command is a synonym for)RESET. See Reset State Indicator on page 648

State Indicator & Name List)SINL

This command displays the contents of the state indicator together with local names.
The display is the same as for)SI (see above) except that a list of local names is
appended to each defined function or operator line.

Example
)SINL

#.PLUS[2]* B A R DYADIC END
.
#.MATDIV[4] R END I J ⎕TRAP
#.FOO[1]* R
⍎

Chapter 5: System Commands 655

Thread Identity)TID {tid}

)TID associates the Session window with the specified thread so that expressions
that you subsequently execute in the Session are executed in the context of that
thread.

If you attempt to)TID to a thread that is paused or running, that thread will, if
possible, be interrupted by a strong interrupt. If the thread is in a state which it would
be inappropriate to interrupt (for example, if the thread is executing an external
function), the system reports:

Can't switch, this thread is n

If no thread number is given,)TID reports the number of the current thread.

Examples
⍝ State indicator
)si

· #.print[1]
&3
· · #.sub_calc[2]*
· &2
· #.calc[1]
&1

⍝ Current thread
)tid

is 2

⍝ Switch suspension to thread 3
)tid 3

was 2

⍝ State indicator
)si

· #.print[1]*
&3
· · #.sub_calc[2]
· &2
· calc[1]
&1

⍝ Attempt to switch to pendent thread 1
)tid 1

Can't switch, this thread is 3

Chapter 5: System Commands 656

List Global Defined Variables)VARS {nm}

This command displays the names of global defined variables in the active
workspace or current namespace. Names are displayed in ⎕AV collation order. If a
name is included after the command, only those names starting at or after the given
name in collation order are displayed.

Examples
)VARS

A B F TEMP VAR

)VARS F
F TEMP VAR

Workspace Identification)WSID {ws}

This command displays or sets the name of the active workspace.

If a workspace name is not specified,)WSID reports the name of the current active
workspace. The name reported is the full path name, including directory references.

If a workspace name is given, the current active workspace is renamed accordingly.
The previous name of the active workspace (excluding directory references) is
reported. See Programming Reference Guide: Workspaces for the rules for
specifying a workspace name.

Examples
)LOAD WS/TEMP

WS/TEMP saved Thu Sep 17 10:32:19 1998

)WSID
is WS/TEMP

)WSID WS/KEEP
was WS/TEMP

)WSID
WS/KEEP

Chapter 5: System Commands 657

Load without Latent Expression)XLOAD {ws}

This command causes the named stored workspace to be loaded. The current active
workspace is lost.

)XLOAD is identical in effect to)LOAD except that)XLOAD does not cause the
expression defined by the latent expression ⎕LX in the saved workspace to be
executed.

Chapter 5: System Commands 658

Appendices: PCRE Specifications 659

Appendices: PCRE Specifications

PCRE (Perl Compatible Regular Expressions) is an open source library used by the
⎕R and ⎕S system operators. The regular expression syntax which the library
supports is not unique to APL nor is it an integral part of the language.

There are two named sections: pcrepattern, which describes the full syntax and
semantics); and prcresyntax, a quick reference summary.

Appendices: PCRE Specifications 660

Appendix A - PCRE Syntax Summary
The following is a summary of search pattern syntax.

PCRESYNTAX(3) Library Functions Manual PCRESYNTAX(3)

NAME
PCRE - Perl-compatible regular expressions

PCRE REGULAR EXPRESSION SYNTAX SUMMARY

The full syntax and semantics of the regular expressions that are sup-
ported by PCRE are described in the pcrepattern documentation. This
document contains a quick-reference summary of the syntax.

QUOTING

\x where x is non-alphanumeric is a literal x
\Q...\E treat enclosed characters as literal

CHARACTERS

\a alarm, that is, the BEL character (hex 07)
\cx "control-x", where x is any ASCII character
\e escape (hex 1B)
\f form feed (hex 0C)
\n newline (hex 0A)
\r carriage return (hex 0D)
\t tab (hex 09)
\0dd character with octal code 0dd
\ddd character with octal code ddd, or backreference
\o{ddd..} character with octal code ddd..
\xhh character with hex code hh
\x{hhh..} character with hex code hhh..

Note that \0dd is always an octal code, and that \8 and \9 are the lit-
eral characters "8" and "9".

CHARACTER TYPES

. any character except newline;
in dotall mode, any character whatsoever

\C one data unit, even in UTF mode (best avoided)
\d a decimal digit
\D a character that is not a decimal digit
\h a horizontal white space character
\H a character that is not a horizontal white space character
\N a character that is not a newline
\p{xx} a character with the xx property
\P{xx} a character without the xx property
\R a newline sequence
\s a white space character
\S a character that is not a white space character
\v a vertical white space character
\V a character that is not a vertical white space character

Appendices: PCRE Specifications 661

\w a "word" character
\W a "non-word" character
\X a Unicode extended grapheme cluster

By default, \d, \s, and \w match only ASCII characters, even in UTF-8
mode or in the 16- bit and 32-bit libraries. However, if locale-spe-
cific matching is happening, \s and \w may also match characters with
code points in the range 128-255. If the PCRE_UCP option is set, the
behaviour of these escape sequences is changed to use Unicode proper-
ties and they match many more characters.

GENERAL CATEGORY PROPERTIES FOR \p and \P

C Other
Cc Control
Cf Format
Cn Unassigned
Co Private use
Cs Surrogate

L Letter
Ll Lower case letter
Lm Modifier letter
Lo Other letter
Lt Title case letter
Lu Upper case letter
L& Ll, Lu, or Lt

M Mark
Mc Spacing mark
Me Enclosing mark
Mn Non-spacing mark

N Number
Nd Decimal number
Nl Letter number
No Other number

P Punctuation
Pc Connector punctuation
Pd Dash punctuation
Pe Close punctuation
Pf Final punctuation
Pi Initial punctuation
Po Other punctuation
Ps Open punctuation

S Symbol
Sc Currency symbol
Sk Modifier symbol
Sm Mathematical symbol
So Other symbol

Z Separator
Zl Line separator
Zp Paragraph separator
Zs Space separator

Appendices: PCRE Specifications 662

PCRE SPECIAL CATEGORY PROPERTIES FOR \p and \P

Xan Alphanumeric: union of properties L and N
Xps POSIX space: property Z or tab, NL, VT, FF, CR
Xsp Perl space: property Z or tab, NL, VT, FF, CR
Xuc Univerally-named character: one that can be

represented by a Universal Character Name
Xwd Perl word: property Xan or underscore

Perl and POSIX space are now the same. Perl added VT to its space char-
acter set at release 5.18 and PCRE changed at release 8.34.

SCRIPT NAMES FOR \p AND \P

Arabic, Armenian, Avestan, Balinese, Bamum, Bassa_Vah, Batak, Bengali,
Bopomofo, Brahmi, Braille, Buginese, Buhid, Canadian_Aboriginal, Car-
ian, Caucasian_Albanian, Chakma, Cham, Cherokee, Common, Coptic, Cunei-
form, Cypriot, Cyrillic, Deseret, Devanagari, Duployan, Egyptian_Hiero-
glyphs, Elbasan, Ethiopic, Georgian, Glagolitic, Gothic, Grantha,
Greek, Gujarati, Gurmukhi, Han, Hangul, Hanunoo, Hebrew, Hiragana,
Imperial_Aramaic, Inherited, Inscriptional_Pahlavi, Inscrip-
tional_Parthian, Javanese, Kaithi, Kannada, Katakana, Kayah_Li,
Kharoshthi, Khmer, Khojki, Khudawadi, Lao, Latin, Lepcha, Limbu, Lin-
ear_A, Linear_B, Lisu, Lycian, Lydian, Mahajani, Malayalam, Mandaic,
Manichaean, Meetei_Mayek, Mende_Kikakui, Meroitic_Cursive,
Meroitic_Hieroglyphs, Miao, Modi, Mongolian, Mro, Myanmar, Nabataean,
New_Tai_Lue, Nko, Ogham, Ol_Chiki, Old_Italic, Old_North_Arabian,
Old_Permic, Old_Persian, Old_South_Arabian, Old_Turkic, Oriya, Osmanya,
Pahawh_Hmong, Palmyrene, Pau_Cin_Hau, Phags_Pa, Phoenician,
Psalter_Pahlavi, Rejang, Runic, Samaritan, Saurashtra, Sharada, Sha-
vian, Siddham, Sinhala, Sora_Sompeng, Sundanese, Syloti_Nagri, Syriac,
Tagalog, Tagbanwa, Tai_Le, Tai_Tham, Tai_Viet, Takri, Tamil, Telugu,
Thaana, Thai, Tibetan, Tifinagh, Tirhuta, Ugaritic, Vai, Warang_Citi,
Yi.

CHARACTER CLASSES

[...] positive character class
[^...] negative character class
[x-y] range (can be used for hex characters)
[[:xxx:]] positive POSIX named set
[[:^xxx:]] negative POSIX named set

alnum alphanumeric
alpha alphabetic
ascii 0-127
blank space or tab
cntrl control character
digit decimal digit
graph printing, excluding space
lower lower case letter
print printing, including space
punct printing, excluding alphanumeric
space white space
upper upper case letter
word same as \w
xdigit hexadecimal digit

Appendices: PCRE Specifications 663

In PCRE, POSIX character set names recognize only ASCII characters by
default, but some of them use Unicode properties if PCRE_UCP is set.
You can use \Q...\E inside a character class.

QUANTIFIERS

? 0 or 1, greedy
?+ 0 or 1, possessive
?? 0 or 1, lazy
* 0 or more, greedy
*+ 0 or more, possessive
*? 0 or more, lazy
+ 1 or more, greedy
++ 1 or more, possessive
+? 1 or more, lazy
{n} exactly n
{n,m} at least n, no more than m, greedy
{n,m}+ at least n, no more than m, possessive
{n,m}? at least n, no more than m, lazy
{n,} n or more, greedy
{n,}+ n or more, possessive
{n,}? n or more, lazy

ANCHORS AND SIMPLE ASSERTIONS

\b word boundary
\B not a word boundary
^ start of subject

also after internal newline in multiline mode
\A start of subject
$ end of subject

also before newline at end of subject
also before internal newline in multiline mode

\Z end of subject
also before newline at end of subject

\z end of subject
\G first matching position in subject

MATCH POINT RESET

\K reset start of match

\K is honoured in positive assertions, but ignored in negative ones.

ALTERNATION

expr|expr|expr...

CAPTURING

(...) capturing group
(?<name>...) named capturing group (Perl)
(?'name'...) named capturing group (Perl)
(?P<name>...) named capturing group (Python)
(?:...) non-capturing group

Appendices: PCRE Specifications 664

(?|...) non-capturing group; reset group numbers for
capturing groups in each alternative

ATOMIC GROUPS

(?>...) atomic, non-capturing group

COMMENT

(?#....) comment (not nestable)

OPTION SETTING

(?i) caseless
(?J) allow duplicate names
(?m) multiline
(?s) single line (dotall)
(?U) default ungreedy (lazy)
(?x) extended (ignore white space)
(?-...) unset option(s)

The following are recognized only at the very start of a pattern or
after one of the newline or \R options with similar syntax. More than
one of them may appear.

(*LIMIT_MATCH=d) set the match limit to d (decimal number)
(*LIMIT_RECURSION=d) set the recursion limit to d (decimal number)
(*NO_AUTO_POSSESS) no auto-possessification (PCRE_NO_AUTO_POSSESS)
(*NO_START_OPT) no start-match optimization (PCRE_NO_START_OPTIMIZE)
(*UTF8) set UTF-8 mode: 8-bit library (PCRE_UTF8)
(*UTF16) set UTF-16 mode: 16-bit library (PCRE_UTF16)
(*UTF32) set UTF-32 mode: 32-bit library (PCRE_UTF32)
(*UTF) set appropriate UTF mode for the library in use
(*UCP) set PCRE_UCP (use Unicode properties for \d etc)

Note that LIMIT_MATCH and LIMIT_RECURSION can only reduce the value of
the limits set by the caller of pcre_exec(), not increase them.

NEWLINE CONVENTION

These are recognized only at the very start of the pattern or after
option settings with a similar syntax.

(*CR) carriage return only
(*LF) linefeed only
(*CRLF) carriage return followed by linefeed
(*ANYCRLF) all three of the above
(*ANY) any Unicode newline sequence

WHAT \R MATCHES

These are recognized only at the very start of the pattern or after
option setting with a similar syntax.

(*BSR_ANYCRLF) CR, LF, or CRLF

Appendices: PCRE Specifications 665

(*BSR_UNICODE) any Unicode newline sequence

LOOKAHEAD AND LOOKBEHIND ASSERTIONS

(?=...) positive look ahead
(?!...) negative look ahead
(?<=...) positive look behind
(?<!...) negative look behind

Each top-level branch of a look behind must be of a fixed length.

BACKREFERENCES

\n reference by number (can be ambiguous)
\gn reference by number
\g{n} reference by number
\g{-n} relative reference by number
\k<name> reference by name (Perl)
\k'name' reference by name (Perl)
\g{name} reference by name (Perl)
\k{name} reference by name (.NET)
(?P=name) reference by name (Python)

SUBROUTINE REFERENCES (POSSIBLY RECURSIVE)

(?R) recurse whole pattern
(?n) call subpattern by absolute number
(?+n) call subpattern by relative number
(?-n) call subpattern by relative number
(?&name) call subpattern by name (Perl)
(?P>name) call subpattern by name (Python)
\g<name> call subpattern by name (Oniguruma)
\g'name' call subpattern by name (Oniguruma)
\g<n> call subpattern by absolute number (Oniguruma)
\g'n' call subpattern by absolute number (Oniguruma)
\g<+n> call subpattern by relative number (PCRE extension)
\g'+n' call subpattern by relative number (PCRE extension)
\g<-n> call subpattern by relative number (PCRE extension)
\g'-n' call subpattern by relative number (PCRE extension)

CONDITIONAL PATTERNS

(?(condition)yes-pattern)
(?(condition)yes-pattern|no-pattern)

(?(n)... absolute reference condition
(?(+n)... relative reference condition
(?(-n)... relative reference condition
(?(<name>)... named reference condition (Perl)
(?('name')... named reference condition (Perl)
(?(name)... named reference condition (PCRE)
(?(R)... overall recursion condition
(?(Rn)... specific group recursion condition
(?(R&name)... specific recursion condition
(?(DEFINE)... define subpattern for reference
(?(assert)... assertion condition

Appendices: PCRE Specifications 666

BACKTRACKING CONTROL

The following act immediately they are reached:

(*ACCEPT) force successful match
(*FAIL) force backtrack; synonym (*F)
(*MARK:NAME) set name to be passed back; synonym (*:NAME)

The following act only when a subsequent match failure causes a back-
track to reach them. They all force a match failure, but they differ in
what happens afterwards. Those that advance the start-of-match point do
so only if the pattern is not anchored.

(*COMMIT) overall failure, no advance of starting point
(*PRUNE) advance to next starting character
(*PRUNE:NAME) equivalent to (*MARK:NAME)(*PRUNE)
(*SKIP) advance to current matching position
(*SKIP:NAME) advance to position corresponding to an earlier

(*MARK:NAME); if not found, the (*SKIP) is ignored
(*THEN) local failure, backtrack to next alternation
(*THEN:NAME) equivalent to (*MARK:NAME)(*THEN)

CALLOUTS

(?C) callout
(?Cn) callout with data n

SEE ALSO

pcrepattern(3), pcreapi(3), pcrecallout(3), pcrematching(3), pcre(3).

AUTHOR

Philip Hazel
University Computing Service
Cambridge CB2 3QH, England.

REVISION

Last updated: 08 January 2014
Copyright (c) 1997-2014 University of Cambridge.

Appendices: PCRE Specifications 667

Appendix B - PCRE Regular Expression Details
PCREPATTERN(3) Library Functions Manual PCREPATTERN(3)

NAME
PCRE - Perl-compatible regular expressions

PCRE REGULAR EXPRESSION DETAILS

The syntax and semantics of the regular expressions that are supported
by PCRE are described in detail below. There is a quick-reference syn-
tax summary in the pcresyntax page. PCRE tries to match Perl syntax and
semantics as closely as it can. PCRE also supports some alternative
regular expression syntax (which does not conflict with the Perl syn-
tax) in order to provide some compatibility with regular expressions in
Python, .NET, and Oniguruma.

Perl's regular expressions are described in its own documentation, and
regular expressions in general are covered in a number of books, some
of which have copious examples. Jeffrey Friedl's "Mastering Regular
Expressions", published by O'Reilly, covers regular expressions in
great detail. This description of PCRE's regular expressions is
intended as reference material.

This document discusses the patterns that are supported by PCRE when
one its main matching functions, pcre_exec() (8-bit) or
pcre[16|32]_exec() (16- or 32-bit), is used. PCRE also has alternative
matching functions, pcre_dfa_exec() and pcre[16|32_dfa_exec(), which
match using a different algorithm that is not Perl-compatible. Some of
the features discussed below are not available when DFA matching is
used. The advantages and disadvantages of the alternative functions,
and how they differ from the normal functions, are discussed in the
pcrematching page.

SPECIAL START-OF-PATTERN ITEMS

A number of options that can be passed to pcre_compile() can also be
set by special items at the start of a pattern. These are not Perl-com-
patible, but are provided to make these options accessible to pattern
writers who are not able to change the program that processes the pat-
tern. Any number of these items may appear, but they must all be
together right at the start of the pattern string, and the letters must
be in upper case.

UTF support

The original operation of PCRE was on strings of one-byte characters.
However, there is now also support for UTF-8 strings in the original
library, an extra library that supports 16-bit and UTF-16 character
strings, and a third library that supports 32-bit and UTF-32 character
strings. To use these features, PCRE must be built to include appropri-
ate support. When using UTF strings you must either call the compiling
function with the PCRE_UTF8, PCRE_UTF16, or PCRE_UTF32 option, or the
pattern must start with one of these special sequences:

(*UTF8)
(*UTF16)

Appendices: PCRE Specifications 668

(*UTF32)
(*UTF)

(*UTF) is a generic sequence that can be used with any of the
libraries. Starting a pattern with such a sequence is equivalent to
setting the relevant option. How setting a UTF mode affects pattern
matching is mentioned in several places below. There is also a summary
of features in the pcreunicode page.

Some applications that allow their users to supply patterns may wish to
restrict them to non-UTF data for security reasons. If the
PCRE_NEVER_UTF option is set at compile time, (*UTF) etc. are not
allowed, and their appearance causes an error.

Unicode property support

Another special sequence that may appear at the start of a pattern is
(*UCP). This has the same effect as setting the PCRE_UCP option: it
causes sequences such as \d and \w to use Unicode properties to deter-
mine character types, instead of recognizing only characters with codes
less than 128 via a lookup table.

Disabling auto-possessification

If a pattern starts with (*NO_AUTO_POSSESS), it has the same effect as
setting the PCRE_NO_AUTO_POSSESS option at compile time. This stops
PCRE from making quantifiers possessive when what follows cannot match
the repeated item. For example, by default a+b is treated as a++b. For
more details, see the pcreapi documentation.

Disabling start-up optimizations

If a pattern starts with (*NO_START_OPT), it has the same effect as
setting the PCRE_NO_START_OPTIMIZE option either at compile or matching
time. This disables several optimizations for quickly reaching "no
match" results. For more details, see the pcreapi documentation.

Newline conventions

PCRE supports five different conventions for indicating line breaks in
strings: a single CR (carriage return) character, a single LF (line-
feed) character, the two-character sequence CRLF, any of the three pre-
ceding, or any Unicode newline sequence. The pcreapi page has further
discussion about newlines, and shows how to set the newline convention
in the options arguments for the compiling and matching functions.

It is also possible to specify a newline convention by starting a pat-
tern string with one of the following five sequences:

(*CR) carriage return
(*LF) linefeed
(*CRLF) carriage return, followed by linefeed
(*ANYCRLF) any of the three above
(*ANY) all Unicode newline sequences

These override the default and the options given to the compiling func-
tion. For example, on a Unix system where LF is the default newline
sequence, the pattern

(*CR)a.b

Appendices: PCRE Specifications 669

changes the convention to CR. That pattern matches "a\nb" because LF is
no longer a newline. If more than one of these settings is present, the
last one is used.

The newline convention affects where the circumflex and dollar asser-
tions are true. It also affects the interpretation of the dot metachar-
acter when PCRE_DOTALL is not set, and the behaviour of \N. However, it
does not affect what the \R escape sequence matches. By default, this
is any Unicode newline sequence, for Perl compatibility. However, this
can be changed; see the description of \R in the section entitled "New-
line sequences" below. A change of \R setting can be combined with a
change of newline convention.

Setting match and recursion limits

The caller of pcre_exec() can set a limit on the number of times the
internal match() function is called and on the maximum depth of recur-
sive calls. These facilities are provided to catch runaway matches that
are provoked by patterns with huge matching trees (a typical example is
a pattern with nested unlimited repeats) and to avoid running out of
system stack by too much recursion. When one of these limits is
reached, pcre_exec() gives an error return. The limits can also be set
by items at the start of the pattern of the form

(*LIMIT_MATCH=d)
(*LIMIT_RECURSION=d)

where d is any number of decimal digits. However, the value of the set-
ting must be less than the value set (or defaulted) by the caller of
pcre_exec() for it to have any effect. In other words, the pattern
writer can lower the limits set by the programmer, but not raise them.
If there is more than one setting of one of these limits, the lower
value is used.

EBCDIC CHARACTER CODES

PCRE can be compiled to run in an environment that uses EBCDIC as its
character code rather than ASCII or Unicode (typically a mainframe sys-
tem). In the sections below, character code values are ASCII or Uni-
code; in an EBCDIC environment these characters may have different code
values, and there are no code points greater than 255.

CHARACTERS AND METACHARACTERS

A regular expression is a pattern that is matched against a subject
string from left to right. Most characters stand for themselves in a
pattern, and match the corresponding characters in the subject. As a
trivial example, the pattern

The quick brown fox

matches a portion of a subject string that is identical to itself. When
caseless matching is specified (the PCRE_CASELESS option), letters are
matched independently of case. In a UTF mode, PCRE always understands
the concept of case for characters whose values are less than 128, so
caseless matching is always possible. For characters with higher val-
ues, the concept of case is supported if PCRE is compiled with Unicode

Appendices: PCRE Specifications 670

property support, but not otherwise. If you want to use caseless
matching for characters 128 and above, you must ensure that PCRE is
compiled with Unicode property support as well as with UTF support.

The power of regular expressions comes from the ability to include
alternatives and repetitions in the pattern. These are encoded in the
pattern by the use of metacharacters, which do not stand for themselves
but instead are interpreted in some special way.

There are two different sets of metacharacters: those that are recog-
nized anywhere in the pattern except within square brackets, and those
that are recognized within square brackets. Outside square brackets,
the metacharacters are as follows:

\ general escape character with several uses
^ assert start of string (or line, in multiline mode)
$ assert end of string (or line, in multiline mode)
. match any character except newline (by default)
[start character class definition
| start of alternative branch
(start subpattern
) end subpattern
? extends the meaning of (

also 0 or 1 quantifier
also quantifier minimizer

* 0 or more quantifier
+ 1 or more quantifier

also "possessive quantifier"
{ start min/max quantifier

Part of a pattern that is in square brackets is called a "character
class". In a character class the only metacharacters are:

\ general escape character
^ negate the class, but only if the first character
- indicates character range
[POSIX character class (only if followed by POSIX

syntax)
] terminates the character class

The following sections describe the use of each of the metacharacters.

BACKSLASH

The backslash character has several uses. Firstly, if it is followed by
a character that is not a number or a letter, it takes away any special
meaning that character may have. This use of backslash as an escape
character applies both inside and outside character classes.

For example, if you want to match a * character, you write * in the
pattern. This escaping action applies whether or not the following
character would otherwise be interpreted as a metacharacter, so it is
always safe to precede a non-alphanumeric with backslash to specify
that it stands for itself. In particular, if you want to match a back-
slash, you write \\.

In a UTF mode, only ASCII numbers and letters have any special meaning
after a backslash. All other characters (in particular, those whose
codepoints are greater than 127) are treated as literals.

Appendices: PCRE Specifications 671

If a pattern is compiled with the PCRE_EXTENDED option, most white
space in the pattern (other than in a character class), and characters
between a # outside a character class and the next newline, inclusive,
are ignored. An escaping backslash can be used to include a white space
or # character as part of the pattern.

If you want to remove the special meaning from a sequence of charac-
ters, you can do so by putting them between \Q and \E. This is differ-
ent from Perl in that $ and @ are handled as literals in \Q...\E
sequences in PCRE, whereas in Perl, $ and @ cause variable interpola-
tion. Note the following examples:

Pattern PCRE matches Perl matches

\Qabc$xyz\E abc$xyz abc followed by the
contents of $xyz

\Qabc\$xyz\E abc\$xyz abc\$xyz
\Qabc\E\$\Qxyz\E abc$xyz abc$xyz

The \Q...\E sequence is recognized both inside and outside character
classes. An isolated \E that is not preceded by \Q is ignored. If \Q
is not followed by \E later in the pattern, the literal interpretation
continues to the end of the pattern (that is, \E is assumed at the
end). If the isolated \Q is inside a character class, this causes an
error, because the character class is not terminated.

Non-printing characters

A second use of backslash provides a way of encoding non-printing char-
acters in patterns in a visible manner. There is no restriction on the
appearance of non-printing characters, apart from the binary zero that
terminates a pattern, but when a pattern is being prepared by text
editing, it is often easier to use one of the following escape
sequences than the binary character it represents:

\a alarm, that is, the BEL character (hex 07)
\cx "control-x", where x is any ASCII character
\e escape (hex 1B)
\f form feed (hex 0C)
\n linefeed (hex 0A)
\r carriage return (hex 0D)
\t tab (hex 09)
\0dd character with octal code 0dd
\ddd character with octal code ddd, or back reference
\o{ddd..} character with octal code ddd..
\xhh character with hex code hh
\x{hhh..} character with hex code hhh.. (non-JavaScript mode)
\uhhhh character with hex code hhhh (JavaScript mode only)

The precise effect of \cx on ASCII characters is as follows: if x is a
lower case letter, it is converted to upper case. Then bit 6 of the
character (hex 40) is inverted. Thus \cA to \cZ become hex 01 to hex 1A
(A is 41, Z is 5A), but \c{ becomes hex 3B ({ is 7B), and \c; becomes
hex 7B (; is 3B). If the data item (byte or 16-bit value) following \c
has a value greater than 127, a compile-time error occurs. This locks
out non-ASCII characters in all modes.

The \c facility was designed for use with ASCII characters, but with
the extension to Unicode it is even less useful than it once was. It

Appendices: PCRE Specifications 672

is, however, recognized when PCRE is compiled in EBCDIC mode, where
data items are always bytes. In this mode, all values are valid after
\c. If the next character is a lower case letter, it is converted to
upper case. Then the 0xc0 bits of the byte are inverted. Thus \cA
becomes hex 01, as in ASCII (A is C1), but because the EBCDIC letters
are disjoint, \cZ becomes hex 29 (Z is E9), and other characters also
generate different values.

After \0 up to two further octal digits are read. If there are fewer
than two digits, just those that are present are used. Thus the
sequence \0\x\07 specifies two binary zeros followed by a BEL character
(code value 7). Make sure you supply two digits after the initial zero
if the pattern character that follows is itself an octal digit.

The escape \o must be followed by a sequence of octal digits, enclosed
in braces. An error occurs if this is not the case. This escape is a
recent addition to Perl; it provides way of specifying character code
points as octal numbers greater than 0777, and it also allows octal
numbers and back references to be unambiguously specified.

For greater clarity and unambiguity, it is best to avoid following \ by
a digit greater than zero. Instead, use \o{} or \x{} to specify charac-
ter numbers, and \g{} to specify back references. The following para-
graphs describe the old, ambiguous syntax.

The handling of a backslash followed by a digit other than 0 is compli-
cated, and Perl has changed in recent releases, causing PCRE also to
change. Outside a character class, PCRE reads the digit and any follow-
ing digits as a decimal number. If the number is less than 8, or if
there have been at least that many previous capturing left parentheses
in the expression, the entire sequence is taken as a back reference. A
description of how this works is given later, following the discussion
of parenthesized subpatterns.

Inside a character class, or if the decimal number following \ is
greater than 7 and there have not been that many capturing subpatterns,
PCRE handles \8 and \9 as the literal characters "8" and "9", and oth-
erwise re-reads up to three octal digits following the backslash, using
them to generate a data character. Any subsequent digits stand for
themselves. For example:

\040 is another way of writing an ASCII space
\40 is the same, provided there are fewer than 40

previous capturing subpatterns
\7 is always a back reference
\11 might be a back reference, or another way of

writing a tab
\011 is always a tab
\0113 is a tab followed by the character "3"
\113 might be a back reference, otherwise the

character with octal code 113
\377 might be a back reference, otherwise

the value 255 (decimal)
\81 is either a back reference, or the two

characters "8" and "1"

Note that octal values of 100 or greater that are specified using this
syntax must not be introduced by a leading zero, because no more than
three octal digits are ever read.

Appendices: PCRE Specifications 673

By default, after \x that is not followed by {, from zero to two hexa-
decimal digits are read (letters can be in upper or lower case). Any
number of hexadecimal digits may appear between \x{ and }. If a charac-
ter other than a hexadecimal digit appears between \x{ and }, or if
there is no terminating }, an error occurs.

If the PCRE_JAVASCRIPT_COMPAT option is set, the interpretation of \x
is as just described only when it is followed by two hexadecimal dig-
its. Otherwise, it matches a literal "x" character. In JavaScript
mode, support for code points greater than 256 is provided by \u, which
must be followed by four hexadecimal digits; otherwise it matches a
literal "u" character.

Characters whose value is less than 256 can be defined by either of the
two syntaxes for \x (or by \u in JavaScript mode). There is no differ-
ence in the way they are handled. For example, \xdc is exactly the same
as \x{dc} (or \u00dc in JavaScript mode).

Constraints on character values

Characters that are specified using octal or hexadecimal numbers are
limited to certain values, as follows:

8-bit non-UTF mode less than 0x100
8-bit UTF-8 mode less than 0x10ffff and a valid codepoint
16-bit non-UTF mode less than 0x10000
16-bit UTF-16 mode less than 0x10ffff and a valid codepoint
32-bit non-UTF mode less than 0x100000000
32-bit UTF-32 mode less than 0x10ffff and a valid codepoint

Invalid Unicode codepoints are the range 0xd800 to 0xdfff (the so-
called "surrogate" codepoints), and 0xffef.

Escape sequences in character classes

All the sequences that define a single character value can be used both
inside and outside character classes. In addition, inside a character
class, \b is interpreted as the backspace character (hex 08).

\N is not allowed in a character class. \B, \R, and \X are not special
inside a character class. Like other unrecognized escape sequences,
they are treated as the literal characters "B", "R", and "X" by
default, but cause an error if the PCRE_EXTRA option is set. Outside a
character class, these sequences have different meanings.

Unsupported escape sequences

In Perl, the sequences \l, \L, \u, and \U are recognized by its string
handler and used to modify the case of following characters. By
default, PCRE does not support these escape sequences. However, if the
PCRE_JAVASCRIPT_COMPAT option is set, \U matches a "U" character, and
\u can be used to define a character by code point, as described in the
previous section.

Absolute and relative back references

The sequence \g followed by an unsigned or a negative number, option-
ally enclosed in braces, is an absolute or relative back reference. A
named back reference can be coded as \g{name}. Back references are dis-
cussed later, following the discussion of parenthesized subpatterns.

Appendices: PCRE Specifications 674

Absolute and relative subroutine calls

For compatibility with Oniguruma, the non-Perl syntax \g followed by a
name or a number enclosed either in angle brackets or single quotes, is
an alternative syntax for referencing a subpattern as a "subroutine".
Details are discussed later. Note that \g{...} (Perl syntax) and
\g<...> (Oniguruma syntax) are not synonymous. The former is a back
reference; the latter is a subroutine call.

Generic character types

Another use of backslash is for specifying generic character types:

\d any decimal digit
\D any character that is not a decimal digit
\h any horizontal white space character
\H any character that is not a horizontal white space character
\s any white space character
\S any character that is not a white space character
\v any vertical white space character
\V any character that is not a vertical white space character
\w any "word" character
\W any "non-word" character

There is also the single sequence \N, which matches a non-newline char-
acter. This is the same as the "." metacharacter when PCRE_DOTALL is
not set. Perl also uses \N to match characters by name; PCRE does not
support this.

Each pair of lower and upper case escape sequences partitions the com-
plete set of characters into two disjoint sets. Any given character
matches one, and only one, of each pair. The sequences can appear both
inside and outside character classes. They each match one character of
the appropriate type. If the current matching point is at the end of
the subject string, all of them fail, because there is no character to
match.

For compatibility with Perl, \s did not used to match the VT character
(code 11), which made it different from the the POSIX "space" class.
However, Perl added VT at release 5.18, and PCRE followed suit at
release 8.34. The default \s characters are now HT (9), LF (10), VT
(11), FF (12), CR (13), and space (32), which are defined as white
space in the "C" locale. This list may vary if locale-specific matching
is taking place. For example, in some locales the "non-breaking space"
character (\xA0) is recognized as white space, and in others the VT
character is not.

A "word" character is an underscore or any character that is a letter
or digit. By default, the definition of letters and digits is con-
trolled by PCRE's low-valued character tables, and may vary if locale-
specific matching is taking place (see "Locale support" in the pcreapi
page). For example, in a French locale such as "fr_FR" in Unix-like
systems, or "french" in Windows, some character codes greater than 127
are used for accented letters, and these are then matched by \w. The
use of locales with Unicode is discouraged.

By default, characters whose code points are greater than 127 never
match \d, \s, or \w, and always match \D, \S, and \W, although this may
vary for characters in the range 128-255 when locale-specific matching

Appendices: PCRE Specifications 675

is happening. These escape sequences retain their original meanings
from before Unicode support was available, mainly for efficiency rea-
sons. If PCRE is compiled with Unicode property support, and the
PCRE_UCP option is set, the behaviour is changed so that Unicode prop-
erties are used to determine character types, as follows:

\d any character that matches \p{Nd} (decimal digit)
\s any character that matches \p{Z} or \h or \v
\w any character that matches \p{L} or \p{N}, plus underscore

The upper case escapes match the inverse sets of characters. Note that
\d matches only decimal digits, whereas \w matches any Unicode digit,
as well as any Unicode letter, and underscore. Note also that PCRE_UCP
affects \b, and \B because they are defined in terms of \w and \W.
Matching these sequences is noticeably slower when PCRE_UCP is set.

The sequences \h, \H, \v, and \V are features that were added to Perl
at release 5.10. In contrast to the other sequences, which match only
ASCII characters by default, these always match certain high-valued
code points, whether or not PCRE_UCP is set. The horizontal space char-
acters are:

U+0009 Horizontal tab (HT)
U+0020 Space
U+00A0 Non-break space
U+1680 Ogham space mark
U+180E Mongolian vowel separator
U+2000 En quad
U+2001 Em quad
U+2002 En space
U+2003 Em space
U+2004 Three-per-em space
U+2005 Four-per-em space
U+2006 Six-per-em space
U+2007 Figure space
U+2008 Punctuation space
U+2009 Thin space
U+200A Hair space
U+202F Narrow no-break space
U+205F Medium mathematical space
U+3000 Ideographic space

The vertical space characters are:

U+000A Linefeed (LF)
U+000B Vertical tab (VT)
U+000C Form feed (FF)
U+000D Carriage return (CR)
U+0085 Next line (NEL)
U+2028 Line separator
U+2029 Paragraph separator

In 8-bit, non-UTF-8 mode, only the characters with codepoints less than
256 are relevant.

Newline sequences

Outside a character class, by default, the escape sequence \R matches
any Unicode newline sequence. In 8-bit non-UTF-8 mode \R is equivalent
to the following:

Appendices: PCRE Specifications 676

(?>\r\n|\n|\x0b|\f|\r|\x85)

This is an example of an "atomic group", details of which are given
below. This particular group matches either the two-character sequence
CR followed by LF, or one of the single characters LF (linefeed,
U+000A), VT (vertical tab, U+000B), FF (form feed, U+000C), CR (car-
riage return, U+000D), or NEL (next line, U+0085). The two-character
sequence is treated as a single unit that cannot be split.

In other modes, two additional characters whose codepoints are greater
than 255 are added: LS (line separator, U+2028) and PS (paragraph sepa-
rator, U+2029). Unicode character property support is not needed for
these characters to be recognized.

It is possible to restrict \R to match only CR, LF, or CRLF (instead of
the complete set of Unicode line endings) by setting the option
PCRE_BSR_ANYCRLF either at compile time or when the pattern is matched.
(BSR is an abbrevation for "backslash R".) This can be made the default
when PCRE is built; if this is the case, the other behaviour can be
requested via the PCRE_BSR_UNICODE option. It is also possible to
specify these settings by starting a pattern string with one of the
following sequences:

(*BSR_ANYCRLF) CR, LF, or CRLF only
(*BSR_UNICODE) any Unicode newline sequence

These override the default and the options given to the compiling func-
tion, but they can themselves be overridden by options given to a
matching function. Note that these special settings, which are not
Perl-compatible, are recognized only at the very start of a pattern,
and that they must be in upper case. If more than one of them is
present, the last one is used. They can be combined with a change of
newline convention; for example, a pattern can start with:

(*ANY)(*BSR_ANYCRLF)

They can also be combined with the (*UTF8), (*UTF16), (*UTF32), (*UTF)
or (*UCP) special sequences. Inside a character class, \R is treated as
an unrecognized escape sequence, and so matches the letter "R" by
default, but causes an error if PCRE_EXTRA is set.

Unicode character properties

When PCRE is built with Unicode character property support, three addi-
tional escape sequences that match characters with specific properties
are available. When in 8-bit non-UTF-8 mode, these sequences are of
course limited to testing characters whose codepoints are less than
256, but they do work in this mode. The extra escape sequences are:

\p{xx} a character with the xx property
\P{xx} a character without the xx property
\X a Unicode extended grapheme cluster

The property names represented by xx above are limited to the Unicode
script names, the general category properties, "Any", which matches any
character (including newline), and some special PCRE properties
(described in the next section). Other Perl properties such as "InMu-
sicalSymbols" are not currently supported by PCRE. Note that \P{Any}
does not match any characters, so always causes a match failure.

Appendices: PCRE Specifications 677

Sets of Unicode characters are defined as belonging to certain scripts.
A character from one of these sets can be matched using a script name.
For example:

\p{Greek}
\P{Han}

Those that are not part of an identified script are lumped together as
"Common". The current list of scripts is:

Arabic, Armenian, Avestan, Balinese, Bamum, Bassa_Vah, Batak, Bengali,
Bopomofo, Brahmi, Braille, Buginese, Buhid, Canadian_Aboriginal, Car-
ian, Caucasian_Albanian, Chakma, Cham, Cherokee, Common, Coptic, Cunei-
form, Cypriot, Cyrillic, Deseret, Devanagari, Duployan, Egyptian_Hiero-
glyphs, Elbasan, Ethiopic, Georgian, Glagolitic, Gothic, Grantha,
Greek, Gujarati, Gurmukhi, Han, Hangul, Hanunoo, Hebrew, Hiragana,
Imperial_Aramaic, Inherited, Inscriptional_Pahlavi, Inscrip-
tional_Parthian, Javanese, Kaithi, Kannada, Katakana, Kayah_Li,
Kharoshthi, Khmer, Khojki, Khudawadi, Lao, Latin, Lepcha, Limbu, Lin-
ear_A, Linear_B, Lisu, Lycian, Lydian, Mahajani, Malayalam, Mandaic,
Manichaean, Meetei_Mayek, Mende_Kikakui, Meroitic_Cursive,
Meroitic_Hieroglyphs, Miao, Modi, Mongolian, Mro, Myanmar, Nabataean,
New_Tai_Lue, Nko, Ogham, Ol_Chiki, Old_Italic, Old_North_Arabian,
Old_Permic, Old_Persian, Old_South_Arabian, Old_Turkic, Oriya, Osmanya,
Pahawh_Hmong, Palmyrene, Pau_Cin_Hau, Phags_Pa, Phoenician,
Psalter_Pahlavi, Rejang, Runic, Samaritan, Saurashtra, Sharada, Sha-
vian, Siddham, Sinhala, Sora_Sompeng, Sundanese, Syloti_Nagri, Syriac,
Tagalog, Tagbanwa, Tai_Le, Tai_Tham, Tai_Viet, Takri, Tamil, Telugu,
Thaana, Thai, Tibetan, Tifinagh, Tirhuta, Ugaritic, Vai, Warang_Citi,
Yi.

Each character has exactly one Unicode general category property, spec-
ified by a two-letter abbreviation. For compatibility with Perl, nega-
tion can be specified by including a circumflex between the opening
brace and the property name. For example, \p{^Lu} is the same as
\P{Lu}.

If only one letter is specified with \p or \P, it includes all the gen-
eral category properties that start with that letter. In this case, in
the absence of negation, the curly brackets in the escape sequence are
optional; these two examples have the same effect:

\p{L}
\pL

The following general category property codes are supported:

C Other
Cc Control
Cf Format
Cn Unassigned
Co Private use
Cs Surrogate

L Letter
Ll Lower case letter
Lm Modifier letter
Lo Other letter
Lt Title case letter

Appendices: PCRE Specifications 678

Lu Upper case letter

M Mark
Mc Spacing mark
Me Enclosing mark
Mn Non-spacing mark

N Number
Nd Decimal number
Nl Letter number
No Other number

P Punctuation
Pc Connector punctuation
Pd Dash punctuation
Pe Close punctuation
Pf Final punctuation
Pi Initial punctuation
Po Other punctuation
Ps Open punctuation

S Symbol
Sc Currency symbol
Sk Modifier symbol
Sm Mathematical symbol
So Other symbol

Z Separator
Zl Line separator
Zp Paragraph separator
Zs Space separator

The special property L& is also supported: it matches a character that
has the Lu, Ll, or Lt property, in other words, a letter that is not
classified as a modifier or "other".

The Cs (Surrogate) property applies only to characters in the range
U+D800 to U+DFFF. Such characters are not valid in Unicode strings and
so cannot be tested by PCRE, unless UTF validity checking has been
turned off (see the discussion of PCRE_NO_UTF8_CHECK,
PCRE_NO_UTF16_CHECK and PCRE_NO_UTF32_CHECK in the pcreapi page). Perl
does not support the Cs property.

The long synonyms for property names that Perl supports (such as
\p{Letter}) are not supported by PCRE, nor is it permitted to prefix
any of these properties with "Is".

No character that is in the Unicode table has the Cn (unassigned) prop-
erty. Instead, this property is assumed for any code point that is not
in the Unicode table.

Specifying caseless matching does not affect these escape sequences.
For example, \p{Lu} always matches only upper case letters. This is
different from the behaviour of current versions of Perl.

Matching characters by Unicode property is not fast, because PCRE has
to do a multistage table lookup in order to find a character's prop-
erty. That is why the traditional escape sequences such as \d and \w do
not use Unicode properties in PCRE by default, though you can make them
do so by setting the PCRE_UCP option or by starting the pattern with

Appendices: PCRE Specifications 679

(*UCP).

Extended grapheme clusters

The \X escape matches any number of Unicode characters that form an
"extended grapheme cluster", and treats the sequence as an atomic group
(see below). Up to and including release 8.31, PCRE matched an ear-
lier, simpler definition that was equivalent to

(?>\PM\pM*)

That is, it matched a character without the "mark" property, followed
by zero or more characters with the "mark" property. Characters with
the "mark" property are typically non-spacing accents that affect the
preceding character.

This simple definition was extended in Unicode to include more compli-
cated kinds of composite character by giving each character a grapheme
breaking property, and creating rules that use these properties to
define the boundaries of extended grapheme clusters. In releases of
PCRE later than 8.31, \X matches one of these clusters.

\X always matches at least one character. Then it decides whether to
add additional characters according to the following rules for ending a
cluster:

1. End at the end of the subject string.

2. Do not end between CR and LF; otherwise end after any control char-
acter.

3. Do not break Hangul (a Korean script) syllable sequences. Hangul
characters are of five types: L, V, T, LV, and LVT. An L character may
be followed by an L, V, LV, or LVT character; an LV or V character may
be followed by a V or T character; an LVT or T character may be follwed
only by a T character.

4. Do not end before extending characters or spacing marks. Characters
with the "mark" property always have the "extend" grapheme breaking
property.

5. Do not end after prepend characters.

6. Otherwise, end the cluster.

PCRE's additional properties

As well as the standard Unicode properties described above, PCRE sup-
ports four more that make it possible to convert traditional escape
sequences such as \w and \s to use Unicode properties. PCRE uses these
non-standard, non-Perl properties internally when PCRE_UCP is set. How-
ever, they may also be used explicitly. These properties are:

Xan Any alphanumeric character
Xps Any POSIX space character
Xsp Any Perl space character
Xwd Any Perl "word" character

Xan matches characters that have either the L (letter) or the N (num-
ber) property. Xps matches the characters tab, linefeed, vertical tab,

Appendices: PCRE Specifications 680

form feed, or carriage return, and any other character that has the Z
(separator) property. Xsp is the same as Xps; it used to exclude ver-
tical tab, for Perl compatibility, but Perl changed, and so PCRE fol-
lowed at release 8.34. Xwd matches the same characters as Xan, plus
underscore.

There is another non-standard property, Xuc, which matches any charac-
ter that can be represented by a Universal Character Name in C++ and
other programming languages. These are the characters $, @, ` (grave
accent), and all characters with Unicode code points greater than or
equal to U+00A0, except for the surrogates U+D800 to U+DFFF. Note that
most base (ASCII) characters are excluded. (Universal Character Names
are of the form \uHHHH or \UHHHHHHHH where H is a hexadecimal digit.
Note that the Xuc property does not match these sequences but the char-
acters that they represent.)

Resetting the match start

The escape sequence \K causes any previously matched characters not to
be included in the final matched sequence. For example, the pattern:

foo\Kbar

matches "foobar", but reports that it has matched "bar". This feature
is similar to a lookbehind assertion (described below). However, in
this case, the part of the subject before the real match does not have
to be of fixed length, as lookbehind assertions do. The use of \K does
not interfere with the setting of captured substrings. For example,
when the pattern

(foo)\Kbar

matches "foobar", the first substring is still set to "foo".

Perl documents that the use of \K within assertions is "not well
defined". In PCRE, \K is acted upon when it occurs inside positive
assertions, but is ignored in negative assertions. Note that when a
pattern such as (?=ab\K) matches, the reported start of the match can
be greater than the end of the match.

Simple assertions

The final use of backslash is for certain simple assertions. An asser-
tion specifies a condition that has to be met at a particular point in
a match, without consuming any characters from the subject string. The
use of subpatterns for more complicated assertions is described below.
The backslashed assertions are:

\b matches at a word boundary
\B matches when not at a word boundary
\A matches at the start of the subject
\Z matches at the end of the subject

also matches before a newline at the end of the subject
\z matches only at the end of the subject
\G matches at the first matching position in the subject

Inside a character class, \b has a different meaning; it matches the
backspace character. If any other of these assertions appears in a
character class, by default it matches the corresponding literal char-
acter (for example, \B matches the letter B). However, if the

Appendices: PCRE Specifications 681

PCRE_EXTRA option is set, an "invalid escape sequence" error is gener-
ated instead.

A word boundary is a position in the subject string where the current
character and the previous character do not both match \w or \W (i.e.
one matches \w and the other matches \W), or the start or end of the
string if the first or last character matches \w, respectively. In a
UTF mode, the meanings of \w and \W can be changed by setting the
PCRE_UCP option. When this is done, it also affects \b and \B. Neither
PCRE nor Perl has a separate "start of word" or "end of word" metase-
quence. However, whatever follows \b normally determines which it is.
For example, the fragment \ba matches "a" at the start of a word.

The \A, \Z, and \z assertions differ from the traditional circumflex
and dollar (described in the next section) in that they only ever match
at the very start and end of the subject string, whatever options are
set. Thus, they are independent of multiline mode. These three asser-
tions are not affected by the PCRE_NOTBOL or PCRE_NOTEOL options, which
affect only the behaviour of the circumflex and dollar metacharacters.
However, if the startoffset argument of pcre_exec() is non-zero, indi-
cating that matching is to start at a point other than the beginning of
the subject, \A can never match. The difference between \Z and \z is
that \Z matches before a newline at the end of the string as well as at
the very end, whereas \z matches only at the end.

The \G assertion is true only when the current matching position is at
the start point of the match, as specified by the startoffset argument
of pcre_exec(). It differs from \A when the value of startoffset is
non-zero. By calling pcre_exec() multiple times with appropriate argu-
ments, you can mimic Perl's /g option, and it is in this kind of imple-
mentation where \G can be useful.

Note, however, that PCRE's interpretation of \G, as the start of the
current match, is subtly different from Perl's, which defines it as the
end of the previous match. In Perl, these can be different when the
previously matched string was empty. Because PCRE does just one match
at a time, it cannot reproduce this behaviour.

If all the alternatives of a pattern begin with \G, the expression is
anchored to the starting match position, and the "anchored" flag is set
in the compiled regular expression.

CIRCUMFLEX AND DOLLAR

The circumflex and dollar metacharacters are zero-width assertions.
That is, they test for a particular condition being true without con-
suming any characters from the subject string.

Outside a character class, in the default matching mode, the circumflex
character is an assertion that is true only if the current matching
point is at the start of the subject string. If the startoffset argu-
ment of pcre_exec() is non-zero, circumflex can never match if the
PCRE_MULTILINE option is unset. Inside a character class, circumflex
has an entirely different meaning (see below).

Circumflex need not be the first character of the pattern if a number
of alternatives are involved, but it should be the first thing in each
alternative in which it appears if the pattern is ever to match that
branch. If all possible alternatives start with a circumflex, that is,

Appendices: PCRE Specifications 682

if the pattern is constrained to match only at the start of the sub-
ject, it is said to be an "anchored" pattern. (There are also other
constructs that can cause a pattern to be anchored.)

The dollar character is an assertion that is true only if the current
matching point is at the end of the subject string, or immediately
before a newline at the end of the string (by default). Note, however,
that it does not actually match the newline. Dollar need not be the
last character of the pattern if a number of alternatives are involved,
but it should be the last item in any branch in which it appears. Dol-
lar has no special meaning in a character class.

The meaning of dollar can be changed so that it matches only at the
very end of the string, by setting the PCRE_DOLLAR_ENDONLY option at
compile time. This does not affect the \Z assertion.

The meanings of the circumflex and dollar characters are changed if the
PCRE_MULTILINE option is set. When this is the case, a circumflex
matches immediately after internal newlines as well as at the start of
the subject string. It does not match after a newline that ends the
string. A dollar matches before any newlines in the string, as well as
at the very end, when PCRE_MULTILINE is set. When newline is specified
as the two-character sequence CRLF, isolated CR and LF characters do
not indicate newlines.

For example, the pattern /^abc$/ matches the subject string "def\nabc"
(where \n represents a newline) in multiline mode, but not otherwise.
Consequently, patterns that are anchored in single line mode because
all branches start with ^ are not anchored in multiline mode, and a
match for circumflex is possible when the startoffset argument of
pcre_exec() is non-zero. The PCRE_DOLLAR_ENDONLY option is ignored if
PCRE_MULTILINE is set.

Note that the sequences \A, \Z, and \z can be used to match the start
and end of the subject in both modes, and if all branches of a pattern
start with \A it is always anchored, whether or not PCRE_MULTILINE is
set.

FULL STOP (PERIOD, DOT) AND \N

Outside a character class, a dot in the pattern matches any one charac-
ter in the subject string except (by default) a character that signi-
fies the end of a line.

When a line ending is defined as a single character, dot never matches
that character; when the two-character sequence CRLF is used, dot does
not match CR if it is immediately followed by LF, but otherwise it
matches all characters (including isolated CRs and LFs). When any Uni-
code line endings are being recognized, dot does not match CR or LF or
any of the other line ending characters.

The behaviour of dot with regard to newlines can be changed. If the
PCRE_DOTALL option is set, a dot matches any one character, without
exception. If the two-character sequence CRLF is present in the subject
string, it takes two dots to match it.

The handling of dot is entirely independent of the handling of circum-
flex and dollar, the only relationship being that they both involve
newlines. Dot has no special meaning in a character class.

Appendices: PCRE Specifications 683

The escape sequence \N behaves like a dot, except that it is not
affected by the PCRE_DOTALL option. In other words, it matches any
character except one that signifies the end of a line. Perl also uses
\N to match characters by name; PCRE does not support this.

MATCHING A SINGLE DATA UNIT

Outside a character class, the escape sequence \C matches any one data
unit, whether or not a UTF mode is set. In the 8-bit library, one data
unit is one byte; in the 16-bit library it is a 16-bit unit; in the
32-bit library it is a 32-bit unit. Unlike a dot, \C always matches
line-ending characters. The feature is provided in Perl in order to
match individual bytes in UTF-8 mode, but it is unclear how it can use-
fully be used. Because \C breaks up characters into individual data
units, matching one unit with \C in a UTF mode means that the rest of
the string may start with a malformed UTF character. This has undefined
results, because PCRE assumes that it is dealing with valid UTF strings
(and by default it checks this at the start of processing unless the
PCRE_NO_UTF8_CHECK, PCRE_NO_UTF16_CHECK or PCRE_NO_UTF32_CHECK option
is used).

PCRE does not allow \C to appear in lookbehind assertions (described
below) in a UTF mode, because this would make it impossible to calcu-
late the length of the lookbehind.

In general, the \C escape sequence is best avoided. However, one way of
using it that avoids the problem of malformed UTF characters is to use
a lookahead to check the length of the next character, as in this pat-
tern, which could be used with a UTF-8 string (ignore white space and
line breaks):

(?| (?=[\x00-\x7f])(\C) |
(?=[\x80-\x{7ff}])(\C)(\C) |
(?=[\x{800}-\x{ffff}])(\C)(\C)(\C) |
(?=[\x{10000}-\x{1fffff}])(\C)(\C)(\C)(\C))

A group that starts with (?| resets the capturing parentheses numbers
in each alternative (see "Duplicate Subpattern Numbers" below). The
assertions at the start of each branch check the next UTF-8 character
for values whose encoding uses 1, 2, 3, or 4 bytes, respectively. The
character's individual bytes are then captured by the appropriate num-
ber of groups.

SQUARE BRACKETS AND CHARACTER CLASSES

An opening square bracket introduces a character class, terminated by a
closing square bracket. A closing square bracket on its own is not spe-
cial by default. However, if the PCRE_JAVASCRIPT_COMPAT option is set,
a lone closing square bracket causes a compile-time error. If a closing
square bracket is required as a member of the class, it should be the
first data character in the class (after an initial circumflex, if
present) or escaped with a backslash.

A character class matches a single character in the subject. In a UTF
mode, the character may be more than one data unit long. A matched
character must be in the set of characters defined by the class, unless
the first character in the class definition is a circumflex, in which

Appendices: PCRE Specifications 684

case the subject character must not be in the set defined by the class.
If a circumflex is actually required as a member of the class, ensure
it is not the first character, or escape it with a backslash.

For example, the character class [aeiou] matches any lower case vowel,
while [^aeiou] matches any character that is not a lower case vowel.
Note that a circumflex is just a convenient notation for specifying the
characters that are in the class by enumerating those that are not. A
class that starts with a circumflex is not an assertion; it still con-
sumes a character from the subject string, and therefore it fails if
the current pointer is at the end of the string.

In UTF-8 (UTF-16, UTF-32) mode, characters with values greater than 255
(0xffff) can be included in a class as a literal string of data units,
or by using the \x{ escaping mechanism.

When caseless matching is set, any letters in a class represent both
their upper case and lower case versions, so for example, a caseless
[aeiou] matches "A" as well as "a", and a caseless [^aeiou] does not
match "A", whereas a caseful version would. In a UTF mode, PCRE always
understands the concept of case for characters whose values are less
than 128, so caseless matching is always possible. For characters with
higher values, the concept of case is supported if PCRE is compiled
with Unicode property support, but not otherwise. If you want to use
caseless matching in a UTF mode for characters 128 and above, you must
ensure that PCRE is compiled with Unicode property support as well as
with UTF support.

Characters that might indicate line breaks are never treated in any
special way when matching character classes, whatever line-ending
sequence is in use, and whatever setting of the PCRE_DOTALL and
PCRE_MULTILINE options is used. A class such as [^a] always matches one
of these characters.

The minus (hyphen) character can be used to specify a range of charac-
ters in a character class. For example, [d-m] matches any letter
between d and m, inclusive. If a minus character is required in a
class, it must be escaped with a backslash or appear in a position
where it cannot be interpreted as indicating a range, typically as the
first or last character in the class, or immediately after a range. For
example, [b-d-z] matches letters in the range b to d, a hyphen charac-
ter, or z.

It is not possible to have the literal character "]" as the end charac-
ter of a range. A pattern such as [W-]46] is interpreted as a class of
two characters ("W" and "-") followed by a literal string "46]", so it
would match "W46]" or "-46]". However, if the "]" is escaped with a
backslash it is interpreted as the end of range, so [W-\]46] is inter-
preted as a class containing a range followed by two other characters.
The octal or hexadecimal representation of "]" can also be used to end
a range.

An error is generated if a POSIX character class (see below) or an
escape sequence other than one that defines a single character appears
at a point where a range ending character is expected. For example,
[z-\xff] is valid, but [A-\d] and [A-[:digit:]] are not.

Ranges operate in the collating sequence of character values. They can
also be used for characters specified numerically, for example
[\000-\037]. Ranges can include any characters that are valid for the

Appendices: PCRE Specifications 685

current mode.

If a range that includes letters is used when caseless matching is set,
it matches the letters in either case. For example, [W-c] is equivalent
to [][\\^_`wxyzabc], matched caselessly, and in a non-UTF mode, if
character tables for a French locale are in use, [\xc8-\xcb] matches
accented E characters in both cases. In UTF modes, PCRE supports the
concept of case for characters with values greater than 128 only when
it is compiled with Unicode property support.

The character escape sequences \d, \D, \h, \H, \p, \P, \s, \S, \v, \V,
\w, and \W may appear in a character class, and add the characters that
they match to the class. For example, [\dABCDEF] matches any hexadeci-
mal digit. In UTF modes, the PCRE_UCP option affects the meanings of
\d, \s, \w and their upper case partners, just as it does when they
appear outside a character class, as described in the section entitled
"Generic character types" above. The escape sequence \b has a different
meaning inside a character class; it matches the backspace character.
The sequences \B, \N, \R, and \X are not special inside a character
class. Like any other unrecognized escape sequences, they are treated
as the literal characters "B", "N", "R", and "X" by default, but cause
an error if the PCRE_EXTRA option is set.

A circumflex can conveniently be used with the upper case character
types to specify a more restricted set of characters than the matching
lower case type. For example, the class [^\W_] matches any letter or
digit, but not underscore, whereas [\w] includes underscore. A positive
character class should be read as "something OR something OR ..." and a
negative class as "NOT something AND NOT something AND NOT ...".

The only metacharacters that are recognized in character classes are
backslash, hyphen (only where it can be interpreted as specifying a
range), circumflex (only at the start), opening square bracket (only
when it can be interpreted as introducing a POSIX class name, or for a
special compatibility feature - see the next two sections), and the
terminating closing square bracket. However, escaping other non-
alphanumeric characters does no harm.

POSIX CHARACTER CLASSES

Perl supports the POSIX notation for character classes. This uses names
enclosed by [: and :] within the enclosing square brackets. PCRE also
supports this notation. For example,

[01[:alpha:]%]

matches "0", "1", any alphabetic character, or "%". The supported class
names are:

alnum letters and digits
alpha letters
ascii character codes 0 - 127
blank space or tab only
cntrl control characters
digit decimal digits (same as \d)
graph printing characters, excluding space
lower lower case letters
print printing characters, including space
punct printing characters, excluding letters and digits and space

Appendices: PCRE Specifications 686

space white space (the same as \s from PCRE 8.34)
upper upper case letters
word "word" characters (same as \w)
xdigit hexadecimal digits

The default "space" characters are HT (9), LF (10), VT (11), FF (12),
CR (13), and space (32). If locale-specific matching is taking place,
the list of space characters may be different; there may be fewer or
more of them. "Space" used to be different to \s, which did not include
VT, for Perl compatibility. However, Perl changed at release 5.18, and
PCRE followed at release 8.34. "Space" and \s now match the same set
of characters.

The name "word" is a Perl extension, and "blank" is a GNU extension
from Perl 5.8. Another Perl extension is negation, which is indicated
by a ^ character after the colon. For example,

[12[:^digit:]]

matches "1", "2", or any non-digit. PCRE (and Perl) also recognize the
POSIX syntax [.ch.] and [=ch=] where "ch" is a "collating element", but
these are not supported, and an error is given if they are encountered.

By default, characters with values greater than 128 do not match any of
the POSIX character classes. However, if the PCRE_UCP option is passed
to pcre_compile(), some of the classes are changed so that Unicode
character properties are used. This is achieved by replacing certain
POSIX classes by other sequences, as follows:

[:alnum:] becomes \p{Xan}
[:alpha:] becomes \p{L}
[:blank:] becomes \h
[:digit:] becomes \p{Nd}
[:lower:] becomes \p{Ll}
[:space:] becomes \p{Xps}
[:upper:] becomes \p{Lu}
[:word:] becomes \p{Xwd}

Negated versions, such as [:^alpha:] use \P instead of \p. Three other
POSIX classes are handled specially in UCP mode:

[:graph:] This matches characters that have glyphs that mark the page
when printed. In Unicode property terms, it matches all char-
acters with the L, M, N, P, S, or Cf properties, except for:

U+061C Arabic Letter Mark
U+180E Mongolian Vowel Separator
U+2066 - U+2069 Various "isolate"s

[:print:] This matches the same characters as [:graph:] plus space
characters that are not controls, that is, characters with
the Zs property.

[:punct:] This matches all characters that have the Unicode P (punctua-
tion) property, plus those characters whose code points are
less than 128 that have the S (Symbol) property.

The other POSIX classes are unchanged, and match only characters with
code points less than 128.

Appendices: PCRE Specifications 687

COMPATIBILITY FEATURE FOR WORD BOUNDARIES

In the POSIX.2 compliant library that was included in 4.4BSD Unix, the
ugly syntax [[:<:]] and [[:>:]] is used for matching "start of word"
and "end of word". PCRE treats these items as follows:

[[:<:]] is converted to \b(?=\w)
[[:>:]] is converted to \b(?<=\w)

Only these exact character sequences are recognized. A sequence such as
[a[:<:]b] provokes error for an unrecognized POSIX class name. This
support is not compatible with Perl. It is provided to help migrations
from other environments, and is best not used in any new patterns. Note
that \b matches at the start and the end of a word (see "Simple asser-
tions" above), and in a Perl-style pattern the preceding or following
character normally shows which is wanted, without the need for the
assertions that are used above in order to give exactly the POSIX be-
haviour.

VERTICAL BAR

Vertical bar characters are used to separate alternative patterns. For
example, the pattern

gilbert|sullivan

matches either "gilbert" or "sullivan". Any number of alternatives may
appear, and an empty alternative is permitted (matching the empty
string). The matching process tries each alternative in turn, from left
to right, and the first one that succeeds is used. If the alternatives
are within a subpattern (defined below), "succeeds" means matching the
rest of the main pattern as well as the alternative in the subpattern.

INTERNAL OPTION SETTING

The settings of the PCRE_CASELESS, PCRE_MULTILINE, PCRE_DOTALL, and
PCRE_EXTENDED options (which are Perl-compatible) can be changed from
within the pattern by a sequence of Perl option letters enclosed
between "(?" and ")". The option letters are

i for PCRE_CASELESS
m for PCRE_MULTILINE
s for PCRE_DOTALL
x for PCRE_EXTENDED

For example, (?im) sets caseless, multiline matching. It is also possi-
ble to unset these options by preceding the letter with a hyphen, and a
combined setting and unsetting such as (?im-sx), which sets PCRE_CASE-
LESS and PCRE_MULTILINE while unsetting PCRE_DOTALL and PCRE_EXTENDED,
is also permitted. If a letter appears both before and after the
hyphen, the option is unset.

The PCRE-specific options PCRE_DUPNAMES, PCRE_UNGREEDY, and PCRE_EXTRA
can be changed in the same way as the Perl-compatible options by using
the characters J, U and X respectively.

Appendices: PCRE Specifications 688

When one of these option changes occurs at top level (that is, not
inside subpattern parentheses), the change applies to the remainder of
the pattern that follows. If the change is placed right at the start of
a pattern, PCRE extracts it into the global options (and it will there-
fore show up in data extracted by the pcre_fullinfo() function).

An option change within a subpattern (see below for a description of
subpatterns) affects only that part of the subpattern that follows it,
so

(a(?i)b)c

matches abc and aBc and no other strings (assuming PCRE_CASELESS is not
used). By this means, options can be made to have different settings
in different parts of the pattern. Any changes made in one alternative
do carry on into subsequent branches within the same subpattern. For
example,

(a(?i)b|c)

matches "ab", "aB", "c", and "C", even though when matching "C" the
first branch is abandoned before the option setting. This is because
the effects of option settings happen at compile time. There would be
some very weird behaviour otherwise.

Note: There are other PCRE-specific options that can be set by the
application when the compiling or matching functions are called. In
some cases the pattern can contain special leading sequences such as
(*CRLF) to override what the application has set or what has been
defaulted. Details are given in the section entitled "Newline
sequences" above. There are also the (*UTF8), (*UTF16),(*UTF32), and
(*UCP) leading sequences that can be used to set UTF and Unicode prop-
erty modes; they are equivalent to setting the PCRE_UTF8, PCRE_UTF16,
PCRE_UTF32 and the PCRE_UCP options, respectively. The (*UTF) sequence
is a generic version that can be used with any of the libraries. How-
ever, the application can set the PCRE_NEVER_UTF option, which locks
out the use of the (*UTF) sequences.

SUBPATTERNS

Subpatterns are delimited by parentheses (round brackets), which can be
nested. Turning part of a pattern into a subpattern does two things:

1. It localizes a set of alternatives. For example, the pattern

cat(aract|erpillar|)

matches "cataract", "caterpillar", or "cat". Without the parentheses,
it would match "cataract", "erpillar" or an empty string.

2. It sets up the subpattern as a capturing subpattern. This means
that, when the whole pattern matches, that portion of the subject
string that matched the subpattern is passed back to the caller via the
ovector argument of the matching function. (This applies only to the
traditional matching functions; the DFA matching functions do not sup-
port capturing.)

Opening parentheses are counted from left to right (starting from 1) to
obtain numbers for the capturing subpatterns. For example, if the

Appendices: PCRE Specifications 689

string "the red king" is matched against the pattern

the ((red|white) (king|queen))

the captured substrings are "red king", "red", and "king", and are num-
bered 1, 2, and 3, respectively.

The fact that plain parentheses fulfil two functions is not always
helpful. There are often times when a grouping subpattern is required
without a capturing requirement. If an opening parenthesis is followed
by a question mark and a colon, the subpattern does not do any captur-
ing, and is not counted when computing the number of any subsequent
capturing subpatterns. For example, if the string "the white queen" is
matched against the pattern

the ((?:red|white) (king|queen))

the captured substrings are "white queen" and "queen", and are numbered
1 and 2. The maximum number of capturing subpatterns is 65535.

As a convenient shorthand, if any option settings are required at the
start of a non-capturing subpattern, the option letters may appear
between the "?" and the ":". Thus the two patterns

(?i:saturday|sunday)
(?:(?i)saturday|sunday)

match exactly the same set of strings. Because alternative branches are
tried from left to right, and options are not reset until the end of
the subpattern is reached, an option setting in one branch does affect
subsequent branches, so the above patterns match "SUNDAY" as well as
"Saturday".

DUPLICATE SUBPATTERN NUMBERS

Perl 5.10 introduced a feature whereby each alternative in a subpattern
uses the same numbers for its capturing parentheses. Such a subpattern
starts with (?| and is itself a non-capturing subpattern. For example,
consider this pattern:

(?|(Sat)ur|(Sun))day

Because the two alternatives are inside a (?| group, both sets of cap-
turing parentheses are numbered one. Thus, when the pattern matches,
you can look at captured substring number one, whichever alternative
matched. This construct is useful when you want to capture part, but
not all, of one of a number of alternatives. Inside a (?| group, paren-
theses are numbered as usual, but the number is reset at the start of
each branch. The numbers of any capturing parentheses that follow the
subpattern start after the highest number used in any branch. The fol-
lowing example is taken from the Perl documentation. The numbers under-
neath show in which buffer the captured content will be stored.

before ---------------branch-reset----------- after
/ (a) (?| x (y) z | (p (q) r) | (t) u (v)) (z) /x
1 2 2 3 2 3 4

A back reference to a numbered subpattern uses the most recent value
that is set for that number by any subpattern. The following pattern

Appendices: PCRE Specifications 690

matches "abcabc" or "defdef":

/(?|(abc)|(def))\1/

In contrast, a subroutine call to a numbered subpattern always refers
to the first one in the pattern with the given number. The following
pattern matches "abcabc" or "defabc":

/(?|(abc)|(def))(?1)/

If a condition test for a subpattern's having matched refers to a non-
unique number, the test is true if any of the subpatterns of that num-
ber have matched.

An alternative approach to using this "branch reset" feature is to use
duplicate named subpatterns, as described in the next section.

NAMED SUBPATTERNS

Identifying capturing parentheses by number is simple, but it can be
very hard to keep track of the numbers in complicated regular expres-
sions. Furthermore, if an expression is modified, the numbers may
change. To help with this difficulty, PCRE supports the naming of sub-
patterns. This feature was not added to Perl until release 5.10. Python
had the feature earlier, and PCRE introduced it at release 4.0, using
the Python syntax. PCRE now supports both the Perl and the Python syn-
tax. Perl allows identically numbered subpatterns to have different
names, but PCRE does not.

In PCRE, a subpattern can be named in one of three ways: (?<name>...)
or (?'name'...) as in Perl, or (?P<name>...) as in Python. References
to capturing parentheses from other parts of the pattern, such as back
references, recursion, and conditions, can be made by name as well as
by number.

Names consist of up to 32 alphanumeric characters and underscores, but
must start with a non-digit. Named capturing parentheses are still
allocated numbers as well as names, exactly as if the names were not
present. The PCRE API provides function calls for extracting the name-
to-number translation table from a compiled pattern. There is also a
convenience function for extracting a captured substring by name.

By default, a name must be unique within a pattern, but it is possible
to relax this constraint by setting the PCRE_DUPNAMES option at compile
time. (Duplicate names are also always permitted for subpatterns with
the same number, set up as described in the previous section.) Dupli-
cate names can be useful for patterns where only one instance of the
named parentheses can match. Suppose you want to match the name of a
weekday, either as a 3-letter abbreviation or as the full name, and in
both cases you want to extract the abbreviation. This pattern (ignoring
the line breaks) does the job:

(?<DN>Mon|Fri|Sun)(?:day)?|
(?<DN>Tue)(?:sday)?|
(?<DN>Wed)(?:nesday)?|
(?<DN>Thu)(?:rsday)?|
(?<DN>Sat)(?:urday)?

There are five capturing substrings, but only one is ever set after a

Appendices: PCRE Specifications 691

match. (An alternative way of solving this problem is to use a "branch
reset" subpattern, as described in the previous section.)

The convenience function for extracting the data by name returns the
substring for the first (and in this example, the only) subpattern of
that name that matched. This saves searching to find which numbered
subpattern it was.

If you make a back reference to a non-unique named subpattern from
elsewhere in the pattern, the subpatterns to which the name refers are
checked in the order in which they appear in the overall pattern. The
first one that is set is used for the reference. For example, this pat-
tern matches both "foofoo" and "barbar" but not "foobar" or "barfoo":

(?:(?<n>foo)|(?<n>bar))\k<n>

If you make a subroutine call to a non-unique named subpattern, the one
that corresponds to the first occurrence of the name is used. In the
absence of duplicate numbers (see the previous section) this is the one
with the lowest number.

If you use a named reference in a condition test (see the section about
conditions below), either to check whether a subpattern has matched, or
to check for recursion, all subpatterns with the same name are tested.
If the condition is true for any one of them, the overall condition is
true. This is the same behaviour as testing by number. For further
details of the interfaces for handling named subpatterns, see the
pcreapi documentation.

Warning: You cannot use different names to distinguish between two sub-
patterns with the same number because PCRE uses only the numbers when
matching. For this reason, an error is given at compile time if differ-
ent names are given to subpatterns with the same number. However, you
can always give the same name to subpatterns with the same number, even
when PCRE_DUPNAMES is not set.

REPETITION

Repetition is specified by quantifiers, which can follow any of the
following items:

a literal data character
the dot metacharacter
the \C escape sequence
the \X escape sequence
the \R escape sequence
an escape such as \d or \pL that matches a single character
a character class
a back reference (see next section)
a parenthesized subpattern (including assertions)
a subroutine call to a subpattern (recursive or otherwise)

The general repetition quantifier specifies a minimum and maximum num-
ber of permitted matches, by giving the two numbers in curly brackets
(braces), separated by a comma. The numbers must be less than 65536,
and the first must be less than or equal to the second. For example:

z{2,4}

Appendices: PCRE Specifications 692

matches "zz", "zzz", or "zzzz". A closing brace on its own is not a
special character. If the second number is omitted, but the comma is
present, there is no upper limit; if the second number and the comma
are both omitted, the quantifier specifies an exact number of required
matches. Thus

[aeiou]{3,}

matches at least 3 successive vowels, but may match many more, while

\d{8}

matches exactly 8 digits. An opening curly bracket that appears in a
position where a quantifier is not allowed, or one that does not match
the syntax of a quantifier, is taken as a literal character. For exam-
ple, {,6} is not a quantifier, but a literal string of four characters.

In UTF modes, quantifiers apply to characters rather than to individual
data units. Thus, for example, \x{100}{2} matches two characters, each
of which is represented by a two-byte sequence in a UTF-8 string. Simi-
larly, \X{3} matches three Unicode extended grapheme clusters, each of
which may be several data units long (and they may be of different
lengths).

The quantifier {0} is permitted, causing the expression to behave as if
the previous item and the quantifier were not present. This may be use-
ful for subpatterns that are referenced as subroutines from elsewhere
in the pattern (but see also the section entitled "Defining subpatterns
for use by reference only" below). Items other than subpatterns that
have a {0} quantifier are omitted from the compiled pattern.

For convenience, the three most common quantifiers have single-charac-
ter abbreviations:

* is equivalent to {0,}
+ is equivalent to {1,}
? is equivalent to {0,1}

It is possible to construct infinite loops by following a subpattern
that can match no characters with a quantifier that has no upper limit,
for example:

(a?)*

Earlier versions of Perl and PCRE used to give an error at compile time
for such patterns. However, because there are cases where this can be
useful, such patterns are now accepted, but if any repetition of the
subpattern does in fact match no characters, the loop is forcibly bro-
ken.

By default, the quantifiers are "greedy", that is, they match as much
as possible (up to the maximum number of permitted times), without
causing the rest of the pattern to fail. The classic example of where
this gives problems is in trying to match comments in C programs. These
appear between /* and */ and within the comment, individual * and /
characters may appear. An attempt to match C comments by applying the
pattern

/*.**/

Appendices: PCRE Specifications 693

to the string

/* first comment */ not comment /* second comment */

fails, because it matches the entire string owing to the greediness of
the .* item.

However, if a quantifier is followed by a question mark, it ceases to
be greedy, and instead matches the minimum number of times possible, so
the pattern

/*.*?*/

does the right thing with the C comments. The meaning of the various
quantifiers is not otherwise changed, just the preferred number of
matches. Do not confuse this use of question mark with its use as a
quantifier in its own right. Because it has two uses, it can sometimes
appear doubled, as in

\d??\d

which matches one digit by preference, but can match two if that is the
only way the rest of the pattern matches.

If the PCRE_UNGREEDY option is set (an option that is not available in
Perl), the quantifiers are not greedy by default, but individual ones
can be made greedy by following them with a question mark. In other
words, it inverts the default behaviour.

When a parenthesized subpattern is quantified with a minimum repeat
count that is greater than 1 or with a limited maximum, more memory is
required for the compiled pattern, in proportion to the size of the
minimum or maximum.

If a pattern starts with .* or .{0,} and the PCRE_DOTALL option (equiv-
alent to Perl's /s) is set, thus allowing the dot to match newlines,
the pattern is implicitly anchored, because whatever follows will be
tried against every character position in the subject string, so there
is no point in retrying the overall match at any position after the
first. PCRE normally treats such a pattern as though it were preceded
by \A.

In cases where it is known that the subject string contains no new-
lines, it is worth setting PCRE_DOTALL in order to obtain this opti-
mization, or alternatively using ^ to indicate anchoring explicitly.

However, there are some cases where the optimization cannot be used.
When .* is inside capturing parentheses that are the subject of a back
reference elsewhere in the pattern, a match at the start may fail where
a later one succeeds. Consider, for example:

(.*)abc\1

If the subject is "xyz123abc123" the match point is the fourth charac-
ter. For this reason, such a pattern is not implicitly anchored.

Another case where implicit anchoring is not applied is when the lead-
ing .* is inside an atomic group. Once again, a match at the start may
fail where a later one succeeds. Consider this pattern:

Appendices: PCRE Specifications 694

(?>.*?a)b

It matches "ab" in the subject "aab". The use of the backtracking con-
trol verbs (*PRUNE) and (*SKIP) also disable this optimization.

When a capturing subpattern is repeated, the value captured is the sub-
string that matched the final iteration. For example, after

(tweedle[dume]{3}\s*)+

has matched "tweedledum tweedledee" the value of the captured substring
is "tweedledee". However, if there are nested capturing subpatterns,
the corresponding captured values may have been set in previous itera-
tions. For example, after

/(a|(b))+/

matches "aba" the value of the second captured substring is "b".

ATOMIC GROUPING AND POSSESSIVE QUANTIFIERS

With both maximizing ("greedy") and minimizing ("ungreedy" or "lazy")
repetition, failure of what follows normally causes the repeated item
to be re-evaluated to see if a different number of repeats allows the
rest of the pattern to match. Sometimes it is useful to prevent this,
either to change the nature of the match, or to cause it fail earlier
than it otherwise might, when the author of the pattern knows there is
no point in carrying on.

Consider, for example, the pattern \d+foo when applied to the subject
line

123456bar

After matching all 6 digits and then failing to match "foo", the normal
action of the matcher is to try again with only 5 digits matching the
\d+ item, and then with 4, and so on, before ultimately failing.
"Atomic grouping" (a term taken from Jeffrey Friedl's book) provides
the means for specifying that once a subpattern has matched, it is not
to be re-evaluated in this way.

If we use atomic grouping for the previous example, the matcher gives
up immediately on failing to match "foo" the first time. The notation
is a kind of special parenthesis, starting with (?> as in this example:

(?>\d+)foo

This kind of parenthesis "locks up" the part of the pattern it con-
tains once it has matched, and a failure further into the pattern is
prevented from backtracking into it. Backtracking past it to previous
items, however, works as normal.

An alternative description is that a subpattern of this type matches
the string of characters that an identical standalone pattern would
match, if anchored at the current point in the subject string.

Atomic grouping subpatterns are not capturing subpatterns. Simple cases
such as the above example can be thought of as a maximizing repeat that

Appendices: PCRE Specifications 695

must swallow everything it can. So, while both \d+ and \d+? are pre-
pared to adjust the number of digits they match in order to make the
rest of the pattern match, (?>\d+) can only match an entire sequence of
digits.

Atomic groups in general can of course contain arbitrarily complicated
subpatterns, and can be nested. However, when the subpattern for an
atomic group is just a single repeated item, as in the example above, a
simpler notation, called a "possessive quantifier" can be used. This
consists of an additional + character following a quantifier. Using
this notation, the previous example can be rewritten as

\d++foo

Note that a possessive quantifier can be used with an entire group, for
example:

(abc|xyz){2,3}+

Possessive quantifiers are always greedy; the setting of the
PCRE_UNGREEDY option is ignored. They are a convenient notation for the
simpler forms of atomic group. However, there is no difference in the
meaning of a possessive quantifier and the equivalent atomic group,
though there may be a performance difference; possessive quantifiers
should be slightly faster.

The possessive quantifier syntax is an extension to the Perl 5.8 syn-
tax. Jeffrey Friedl originated the idea (and the name) in the first
edition of his book. Mike McCloskey liked it, so implemented it when he
built Sun's Java package, and PCRE copied it from there. It ultimately
found its way into Perl at release 5.10.

PCRE has an optimization that automatically "possessifies" certain sim-
ple pattern constructs. For example, the sequence A+B is treated as
A++B because there is no point in backtracking into a sequence of A's
when B must follow.

When a pattern contains an unlimited repeat inside a subpattern that
can itself be repeated an unlimited number of times, the use of an
atomic group is the only way to avoid some failing matches taking a
very long time indeed. The pattern

(\D+|<\d+>)*[!?]

matches an unlimited number of substrings that either consist of non-
digits, or digits enclosed in <>, followed by either ! or ?. When it
matches, it runs quickly. However, if it is applied to

aa

it takes a long time before reporting failure. This is because the
string can be divided between the internal \D+ repeat and the external
* repeat in a large number of ways, and all have to be tried. (The
example uses [!?] rather than a single character at the end, because
both PCRE and Perl have an optimization that allows for fast failure
when a single character is used. They remember the last single charac-
ter that is required for a match, and fail early if it is not present
in the string.) If the pattern is changed so that it uses an atomic
group, like this:

Appendices: PCRE Specifications 696

((?>\D+)|<\d+>)*[!?]

sequences of non-digits cannot be broken, and failure happens quickly.

BACK REFERENCES

Outside a character class, a backslash followed by a digit greater than
0 (and possibly further digits) is a back reference to a capturing sub-
pattern earlier (that is, to its left) in the pattern, provided there
have been that many previous capturing left parentheses.

However, if the decimal number following the backslash is less than 10,
it is always taken as a back reference, and causes an error only if
there are not that many capturing left parentheses in the entire pat-
tern. In other words, the parentheses that are referenced need not be
to the left of the reference for numbers less than 10. A "forward back
reference" of this type can make sense when a repetition is involved
and the subpattern to the right has participated in an earlier itera-
tion.

It is not possible to have a numerical "forward back reference" to a
subpattern whose number is 10 or more using this syntax because a
sequence such as \50 is interpreted as a character defined in octal.
See the subsection entitled "Non-printing characters" above for further
details of the handling of digits following a backslash. There is no
such problem when named parentheses are used. A back reference to any
subpattern is possible using named parentheses (see below).

Another way of avoiding the ambiguity inherent in the use of digits
following a backslash is to use the \g escape sequence. This escape
must be followed by an unsigned number or a negative number, optionally
enclosed in braces. These examples are all identical:

(ring), \1
(ring), \g1
(ring), \g{1}

An unsigned number specifies an absolute reference without the ambigu-
ity that is present in the older syntax. It is also useful when literal
digits follow the reference. A negative number is a relative reference.
Consider this example:

(abc(def)ghi)\g{-1}

The sequence \g{-1} is a reference to the most recently started captur-
ing subpattern before \g, that is, is it equivalent to \2 in this exam-
ple. Similarly, \g{-2} would be equivalent to \1. The use of relative
references can be helpful in long patterns, and also in patterns that
are created by joining together fragments that contain references
within themselves.

A back reference matches whatever actually matched the capturing sub-
pattern in the current subject string, rather than anything matching
the subpattern itself (see "Subpatterns as subroutines" below for a way
of doing that). So the pattern

(sens|respons)e and \1ibility

matches "sense and sensibility" and "response and responsibility", but

Appendices: PCRE Specifications 697

not "sense and responsibility". If caseful matching is in force at the
time of the back reference, the case of letters is relevant. For exam-
ple,

((?i)rah)\s+\1

matches "rah rah" and "RAH RAH", but not "RAH rah", even though the
original capturing subpattern is matched caselessly.

There are several different ways of writing back references to named
subpatterns. The .NET syntax \k{name} and the Perl syntax \k<name> or
\k'name' are supported, as is the Python syntax (?P=name). Perl 5.10's
unified back reference syntax, in which \g can be used for both numeric
and named references, is also supported. We could rewrite the above
example in any of the following ways:

(?<p1>(?i)rah)\s+\k<p1>
(?'p1'(?i)rah)\s+\k{p1}
(?P<p1>(?i)rah)\s+(?P=p1)
(?<p1>(?i)rah)\s+\g{p1}

A subpattern that is referenced by name may appear in the pattern
before or after the reference.

There may be more than one back reference to the same subpattern. If a
subpattern has not actually been used in a particular match, any back
references to it always fail by default. For example, the pattern

(a|(bc))\2

always fails if it starts to match "a" rather than "bc". However, if
the PCRE_JAVASCRIPT_COMPAT option is set at compile time, a back refer-
ence to an unset value matches an empty string.

Because there may be many capturing parentheses in a pattern, all dig-
its following a backslash are taken as part of a potential back refer-
ence number. If the pattern continues with a digit character, some
delimiter must be used to terminate the back reference. If the
PCRE_EXTENDED option is set, this can be white space. Otherwise, the
\g{ syntax or an empty comment (see "Comments" below) can be used.

Recursive back references

A back reference that occurs inside the parentheses to which it refers
fails when the subpattern is first used, so, for example, (a\1) never
matches. However, such references can be useful inside repeated sub-
patterns. For example, the pattern

(a|b\1)+

matches any number of "a"s and also "aba", "ababbaa" etc. At each iter-
ation of the subpattern, the back reference matches the character
string corresponding to the previous iteration. In order for this to
work, the pattern must be such that the first iteration does not need
to match the back reference. This can be done using alternation, as in
the example above, or by a quantifier with a minimum of zero.

Back references of this type cause the group that they reference to be
treated as an atomic group. Once the whole group has been matched, a
subsequent matching failure cannot cause backtracking into the middle

Appendices: PCRE Specifications 698

of the group.

ASSERTIONS

An assertion is a test on the characters following or preceding the
current matching point that does not actually consume any characters.
The simple assertions coded as \b, \B, \A, \G, \Z, \z, ^ and $ are
described above.

More complicated assertions are coded as subpatterns. There are two
kinds: those that look ahead of the current position in the subject
string, and those that look behind it. An assertion subpattern is
matched in the normal way, except that it does not cause the current
matching position to be changed.

Assertion subpatterns are not capturing subpatterns. If such an asser-
tion contains capturing subpatterns within it, these are counted for
the purposes of numbering the capturing subpatterns in the whole pat-
tern. However, substring capturing is carried out only for positive
assertions. (Perl sometimes, but not always, does do capturing in nega-
tive assertions.)

For compatibility with Perl, assertion subpatterns may be repeated;
though it makes no sense to assert the same thing several times, the
side effect of capturing parentheses may occasionally be useful. In
practice, there only three cases:

(1) If the quantifier is {0}, the assertion is never obeyed during
matching. However, it may contain internal capturing parenthesized
groups that are called from elsewhere via the subroutine mechanism.

(2) If quantifier is {0,n} where n is greater than zero, it is treated
as if it were {0,1}. At run time, the rest of the pattern match is
tried with and without the assertion, the order depending on the greed-
iness of the quantifier.

(3) If the minimum repetition is greater than zero, the quantifier is
ignored. The assertion is obeyed just once when encountered during
matching.

Lookahead assertions

Lookahead assertions start with (?= for positive assertions and (?! for
negative assertions. For example,

\w+(?=;)

matches a word followed by a semicolon, but does not include the semi-
colon in the match, and

foo(?!bar)

matches any occurrence of "foo" that is not followed by "bar". Note
that the apparently similar pattern

(?!foo)bar

does not find an occurrence of "bar" that is preceded by something
other than "foo"; it finds any occurrence of "bar" whatsoever, because

Appendices: PCRE Specifications 699

the assertion (?!foo) is always true when the next three characters are
"bar". A lookbehind assertion is needed to achieve the other effect.

If you want to force a matching failure at some point in a pattern, the
most convenient way to do it is with (?!) because an empty string
always matches, so an assertion that requires there not to be an empty
string must always fail. The backtracking control verb (*FAIL) or (*F)
is a synonym for (?!).

Lookbehind assertions

Lookbehind assertions start with (?<= for positive assertions and (?<!
for negative assertions. For example,

(?<!foo)bar

does find an occurrence of "bar" that is not preceded by "foo". The
contents of a lookbehind assertion are restricted such that all the
strings it matches must have a fixed length. However, if there are sev-
eral top-level alternatives, they do not all have to have the same
fixed length. Thus

(?<=bullock|donkey)

is permitted, but

(?<!dogs?|cats?)

causes an error at compile time. Branches that match different length
strings are permitted only at the top level of a lookbehind assertion.
This is an extension compared with Perl, which requires all branches to
match the same length of string. An assertion such as

(?<=ab(c|de))

is not permitted, because its single top-level branch can match two
different lengths, but it is acceptable to PCRE if rewritten to use two
top-level branches:

(?<=abc|abde)

In some cases, the escape sequence \K (see above) can be used instead
of a lookbehind assertion to get round the fixed-length restriction.

The implementation of lookbehind assertions is, for each alternative,
to temporarily move the current position back by the fixed length and
then try to match. If there are insufficient characters before the cur-
rent position, the assertion fails.

In a UTF mode, PCRE does not allow the \C escape (which matches a sin-
gle data unit even in a UTF mode) to appear in lookbehind assertions,
because it makes it impossible to calculate the length of the lookbe-
hind. The \X and \R escapes, which can match different numbers of data
units, are also not permitted.

"Subroutine" calls (see below) such as (?2) or (?&X) are permitted in
lookbehinds, as long as the subpattern matches a fixed-length string.
Recursion, however, is not supported.

Possessive quantifiers can be used in conjunction with lookbehind

Appendices: PCRE Specifications 700

assertions to specify efficient matching of fixed-length strings at the
end of subject strings. Consider a simple pattern such as

abcd$

when applied to a long string that does not match. Because matching
proceeds from left to right, PCRE will look for each "a" in the subject
and then see if what follows matches the rest of the pattern. If the
pattern is specified as

^.*abcd$

the initial .* matches the entire string at first, but when this fails
(because there is no following "a"), it backtracks to match all but the
last character, then all but the last two characters, and so on. Once
again the search for "a" covers the entire string, from right to left,
so we are no better off. However, if the pattern is written as

^.*+(?<=abcd)

there can be no backtracking for the .*+ item; it can match only the
entire string. The subsequent lookbehind assertion does a single test
on the last four characters. If it fails, the match fails immediately.
For long strings, this approach makes a significant difference to the
processing time.

Using multiple assertions

Several assertions (of any sort) may occur in succession. For example,

(?<=\d{3})(?<!999)foo

matches "foo" preceded by three digits that are not "999". Notice that
each of the assertions is applied independently at the same point in
the subject string. First there is a check that the previous three
characters are all digits, and then there is a check that the same
three characters are not "999". This pattern does not match "foo" pre-
ceded by six characters, the first of which are digits and the last
three of which are not "999". For example, it doesn't match "123abc-
foo". A pattern to do that is

(?<=\d{3}...)(?<!999)foo

This time the first assertion looks at the preceding six characters,
checking that the first three are digits, and then the second assertion
checks that the preceding three characters are not "999".

Assertions can be nested in any combination. For example,

(?<=(?<!foo)bar)baz

matches an occurrence of "baz" that is preceded by "bar" which in turn
is not preceded by "foo", while

(?<=\d{3}(?!999)...)foo

is another pattern that matches "foo" preceded by three digits and any
three characters that are not "999".

Appendices: PCRE Specifications 701

CONDITIONAL SUBPATTERNS

It is possible to cause the matching process to obey a subpattern con-
ditionally or to choose between two alternative subpatterns, depending
on the result of an assertion, or whether a specific capturing subpat-
tern has already been matched. The two possible forms of conditional
subpattern are:

(?(condition)yes-pattern)
(?(condition)yes-pattern|no-pattern)

If the condition is satisfied, the yes-pattern is used; otherwise the
no-pattern (if present) is used. If there are more than two alterna-
tives in the subpattern, a compile-time error occurs. Each of the two
alternatives may itself contain nested subpatterns of any form, includ-
ing conditional subpatterns; the restriction to two alternatives
applies only at the level of the condition. This pattern fragment is an
example where the alternatives are complex:

(?(1) (A|B|C) | (D | (?(2)E|F) | E))

There are four kinds of condition: references to subpatterns, refer-
ences to recursion, a pseudo-condition called DEFINE, and assertions.

Checking for a used subpattern by number

If the text between the parentheses consists of a sequence of digits,
the condition is true if a capturing subpattern of that number has pre-
viously matched. If there is more than one capturing subpattern with
the same number (see the earlier section about duplicate subpattern
numbers), the condition is true if any of them have matched. An alter-
native notation is to precede the digits with a plus or minus sign. In
this case, the subpattern number is relative rather than absolute. The
most recently opened parentheses can be referenced by (?(-1), the next
most recent by (?(-2), and so on. Inside loops it can also make sense
to refer to subsequent groups. The next parentheses to be opened can be
referenced as (?(+1), and so on. (The value zero in any of these forms
is not used; it provokes a compile-time error.)

Consider the following pattern, which contains non-significant white
space to make it more readable (assume the PCRE_EXTENDED option) and to
divide it into three parts for ease of discussion:

(\()? [^()]+ (?(1) \))

The first part matches an optional opening parenthesis, and if that
character is present, sets it as the first captured substring. The sec-
ond part matches one or more characters that are not parentheses. The
third part is a conditional subpattern that tests whether or not the
first set of parentheses matched. If they did, that is, if subject
started with an opening parenthesis, the condition is true, and so the
yes-pattern is executed and a closing parenthesis is required. Other-
wise, since no-pattern is not present, the subpattern matches nothing.
In other words, this pattern matches a sequence of non-parentheses,
optionally enclosed in parentheses.

If you were embedding this pattern in a larger one, you could use a
relative reference:

Appendices: PCRE Specifications 702

...other stuff... (\()? [^()]+ (?(-1) \)) ...

This makes the fragment independent of the parentheses in the larger
pattern.

Checking for a used subpattern by name

Perl uses the syntax (?(<name>)...) or (?('name')...) to test for a
used subpattern by name. For compatibility with earlier versions of
PCRE, which had this facility before Perl, the syntax (?(name)...) is
also recognized.

Rewriting the above example to use a named subpattern gives this:

(?<OPEN> \()? [^()]+ (?(<OPEN>) \))

If the name used in a condition of this kind is a duplicate, the test
is applied to all subpatterns of the same name, and is true if any one
of them has matched.

Checking for pattern recursion

If the condition is the string (R), and there is no subpattern with the
name R, the condition is true if a recursive call to the whole pattern
or any subpattern has been made. If digits or a name preceded by amper-
sand follow the letter R, for example:

(?(R3)...) or (?(R&name)...)

the condition is true if the most recent recursion is into a subpattern
whose number or name is given. This condition does not check the entire
recursion stack. If the name used in a condition of this kind is a
duplicate, the test is applied to all subpatterns of the same name, and
is true if any one of them is the most recent recursion.

At "top level", all these recursion test conditions are false. The
syntax for recursive patterns is described below.

Defining subpatterns for use by reference only

If the condition is the string (DEFINE), and there is no subpattern
with the name DEFINE, the condition is always false. In this case,
there may be only one alternative in the subpattern. It is always
skipped if control reaches this point in the pattern; the idea of
DEFINE is that it can be used to define subroutines that can be refer-
enced from elsewhere. (The use of subroutines is described below.) For
example, a pattern to match an IPv4 address such as "192.168.23.245"
could be written like this (ignore white space and line breaks):

(?(DEFINE) (?<byte> 2[0-4]\d | 25[0-5] | 1\d\d | [1-9]?\d))
\b (?&byte) (\.(?&byte)){3} \b

The first part of the pattern is a DEFINE group inside which a another
group named "byte" is defined. This matches an individual component of
an IPv4 address (a number less than 256). When matching takes place,
this part of the pattern is skipped because DEFINE acts like a false
condition. The rest of the pattern uses references to the named group
to match the four dot-separated components of an IPv4 address, insist-
ing on a word boundary at each end.

Appendices: PCRE Specifications 703

Assertion conditions

If the condition is not in any of the above formats, it must be an
assertion. This may be a positive or negative lookahead or lookbehind
assertion. Consider this pattern, again containing non-significant
white space, and with the two alternatives on the second line:

(?(?=[^a-z]*[a-z])
\d{2}-[a-z]{3}-\d{2} | \d{2}-\d{2}-\d{2})

The condition is a positive lookahead assertion that matches an
optional sequence of non-letters followed by a letter. In other words,
it tests for the presence of at least one letter in the subject. If a
letter is found, the subject is matched against the first alternative;
otherwise it is matched against the second. This pattern matches
strings in one of the two forms dd-aaa-dd or dd-dd-dd, where aaa are
letters and dd are digits.

COMMENTS

There are two ways of including comments in patterns that are processed
by PCRE. In both cases, the start of the comment must not be in a char-
acter class, nor in the middle of any other sequence of related charac-
ters such as (?: or a subpattern name or number. The characters that
make up a comment play no part in the pattern matching.

The sequence (?# marks the start of a comment that continues up to the
next closing parenthesis. Nested parentheses are not permitted. If the
PCRE_EXTENDED option is set, an unescaped # character also introduces a
comment, which in this case continues to immediately after the next
newline character or character sequence in the pattern. Which charac-
ters are interpreted as newlines is controlled by the options passed to
a compiling function or by a special sequence at the start of the pat-
tern, as described in the section entitled "Newline conventions" above.
Note that the end of this type of comment is a literal newline sequence
in the pattern; escape sequences that happen to represent a newline do
not count. For example, consider this pattern when PCRE_EXTENDED is
set, and the default newline convention is in force:

abc #comment \n still comment

On encountering the # character, pcre_compile() skips along, looking
for a newline in the pattern. The sequence \n is still literal at this
stage, so it does not terminate the comment. Only an actual character
with the code value 0x0a (the default newline) does so.

RECURSIVE PATTERNS

Consider the problem of matching a string in parentheses, allowing for
unlimited nested parentheses. Without the use of recursion, the best
that can be done is to use a pattern that matches up to some fixed
depth of nesting. It is not possible to handle an arbitrary nesting
depth.

For some time, Perl has provided a facility that allows regular expres-
sions to recurse (amongst other things). It does this by interpolating
Perl code in the expression at run time, and the code can refer to the
expression itself. A Perl pattern using code interpolation to solve the

Appendices: PCRE Specifications 704

parentheses problem can be created like this:

$re = qr{\((?: (?>[^()]+) | (?p{$re}))* \)}x;

The (?p{...}) item interpolates Perl code at run time, and in this case
refers recursively to the pattern in which it appears.

Obviously, PCRE cannot support the interpolation of Perl code. Instead,
it supports special syntax for recursion of the entire pattern, and
also for individual subpattern recursion. After its introduction in
PCRE and Python, this kind of recursion was subsequently introduced
into Perl at release 5.10.

A special item that consists of (? followed by a number greater than
zero and a closing parenthesis is a recursive subroutine call of the
subpattern of the given number, provided that it occurs inside that
subpattern. (If not, it is a non-recursive subroutine call, which is
described in the next section.) The special item (?R) or (?0) is a
recursive call of the entire regular expression.

This PCRE pattern solves the nested parentheses problem (assume the
PCRE_EXTENDED option is set so that white space is ignored):

\(([^()]++ | (?R))* \)

First it matches an opening parenthesis. Then it matches any number of
substrings which can either be a sequence of non-parentheses, or a
recursive match of the pattern itself (that is, a correctly parenthe-
sized substring). Finally there is a closing parenthesis. Note the use
of a possessive quantifier to avoid backtracking into sequences of non-
parentheses.

If this were part of a larger pattern, you would not want to recurse
the entire pattern, so instead you could use this:

(\(([^()]++ | (?1))* \))

We have put the pattern into parentheses, and caused the recursion to
refer to them instead of the whole pattern.

In a larger pattern, keeping track of parenthesis numbers can be
tricky. This is made easier by the use of relative references. Instead
of (?1) in the pattern above you can write (?-2) to refer to the second
most recently opened parentheses preceding the recursion. In other
words, a negative number counts capturing parentheses leftwards from
the point at which it is encountered.

It is also possible to refer to subsequently opened parentheses, by
writing references such as (?+2). However, these cannot be recursive
because the reference is not inside the parentheses that are refer-
enced. They are always non-recursive subroutine calls, as described in
the next section.

An alternative approach is to use named parentheses instead. The Perl
syntax for this is (?&name); PCRE's earlier syntax (?P>name) is also
supported. We could rewrite the above example as follows:

(?<pn> \(([^()]++ | (?&pn))* \))

If there is more than one subpattern with the same name, the earliest

Appendices: PCRE Specifications 705

one is used.

This particular example pattern that we have been looking at contains
nested unlimited repeats, and so the use of a possessive quantifier for
matching strings of non-parentheses is important when applying the pat-
tern to strings that do not match. For example, when this pattern is
applied to

(aaa()

it yields "no match" quickly. However, if a possessive quantifier is
not used, the match runs for a very long time indeed because there are
so many different ways the + and * repeats can carve up the subject,
and all have to be tested before failure can be reported.

At the end of a match, the values of capturing parentheses are those
from the outermost level. If you want to obtain intermediate values, a
callout function can be used (see below and the pcrecallout documenta-
tion). If the pattern above is matched against

(ab(cd)ef)

the value for the inner capturing parentheses (numbered 2) is "ef",
which is the last value taken on at the top level. If a capturing sub-
pattern is not matched at the top level, its final captured value is
unset, even if it was (temporarily) set at a deeper level during the
matching process.

If there are more than 15 capturing parentheses in a pattern, PCRE has
to obtain extra memory to store data during a recursion, which it does
by using pcre_malloc, freeing it via pcre_free afterwards. If no memory
can be obtained, the match fails with the PCRE_ERROR_NOMEMORY error.

Do not confuse the (?R) item with the condition (R), which tests for
recursion. Consider this pattern, which matches text in angle brack-
ets, allowing for arbitrary nesting. Only digits are allowed in nested
brackets (that is, when recursing), whereas any characters are permit-
ted at the outer level.

< (?: (?(R) \d++ | [^<>]*+) | (?R)) * >

In this pattern, (?(R) is the start of a conditional subpattern, with
two different alternatives for the recursive and non-recursive cases.
The (?R) item is the actual recursive call.

Differences in recursion processing between PCRE and Perl

Recursion processing in PCRE differs from Perl in two important ways.
In PCRE (like Python, but unlike Perl), a recursive subpattern call is
always treated as an atomic group. That is, once it has matched some of
the subject string, it is never re-entered, even if it contains untried
alternatives and there is a subsequent matching failure. This can be
illustrated by the following pattern, which purports to match a palin-
dromic string that contains an odd number of characters (for example,
"a", "aba", "abcba", "abcdcba"):

^(.|(.)(?1)\2)$

The idea is that it either matches a single character, or two identical
characters surrounding a sub-palindrome. In Perl, this pattern works;

Appendices: PCRE Specifications 706

in PCRE it does not if the pattern is longer than three characters.
Consider the subject string "abcba":

At the top level, the first character is matched, but as it is not at
the end of the string, the first alternative fails; the second alterna-
tive is taken and the recursion kicks in. The recursive call to subpat-
tern 1 successfully matches the next character ("b"). (Note that the
beginning and end of line tests are not part of the recursion).

Back at the top level, the next character ("c") is compared with what
subpattern 2 matched, which was "a". This fails. Because the recursion
is treated as an atomic group, there are now no backtracking points,
and so the entire match fails. (Perl is able, at this point, to re-
enter the recursion and try the second alternative.) However, if the
pattern is written with the alternatives in the other order, things are
different:

^((.)(?1)\2|.)$

This time, the recursing alternative is tried first, and continues to
recurse until it runs out of characters, at which point the recursion
fails. But this time we do have another alternative to try at the
higher level. That is the big difference: in the previous case the
remaining alternative is at a deeper recursion level, which PCRE cannot
use.

To change the pattern so that it matches all palindromic strings, not
just those with an odd number of characters, it is tempting to change
the pattern to this:

^((.)(?1)\2|.?)$

Again, this works in Perl, but not in PCRE, and for the same reason.
When a deeper recursion has matched a single character, it cannot be
entered again in order to match an empty string. The solution is to
separate the two cases, and write out the odd and even cases as alter-
natives at the higher level:

^(?:((.)(?1)\2|)|((.)(?3)\4|.))

If you want to match typical palindromic phrases, the pattern has to
ignore all non-word characters, which can be done like this:

^\W*+(?:((.)\W*+(?1)\W*+\2|)|((.)\W*+(?3)\W*+\4|\W*+.\W*+))\W*+$

If run with the PCRE_CASELESS option, this pattern matches phrases such
as "A man, a plan, a canal: Panama!" and it works well in both PCRE and
Perl. Note the use of the possessive quantifier *+ to avoid backtrack-
ing into sequences of non-word characters. Without this, PCRE takes a
great deal longer (ten times or more) to match typical phrases, and
Perl takes so long that you think it has gone into a loop.

WARNING: The palindrome-matching patterns above work only if the sub-
ject string does not start with a palindrome that is shorter than the
entire string. For example, although "abcba" is correctly matched, if
the subject is "ababa", PCRE finds the palindrome "aba" at the start,
then fails at top level because the end of the string does not follow.
Once again, it cannot jump back into the recursion to try other alter-
natives, so the entire match fails.

Appendices: PCRE Specifications 707

The second way in which PCRE and Perl differ in their recursion pro-
cessing is in the handling of captured values. In Perl, when a subpat-
tern is called recursively or as a subpattern (see the next section),
it has no access to any values that were captured outside the recur-
sion, whereas in PCRE these values can be referenced. Consider this
pattern:

^(.)(\1|a(?2))

In PCRE, this pattern matches "bab". The first capturing parentheses
match "b", then in the second group, when the back reference \1 fails
to match "b", the second alternative matches "a" and then recurses. In
the recursion, \1 does now match "b" and so the whole match succeeds.
In Perl, the pattern fails to match because inside the recursive call
\1 cannot access the externally set value.

SUBPATTERNS AS SUBROUTINES

If the syntax for a recursive subpattern call (either by number or by
name) is used outside the parentheses to which it refers, it operates
like a subroutine in a programming language. The called subpattern may
be defined before or after the reference. A numbered reference can be
absolute or relative, as in these examples:

(...(absolute)...)...(?2)...
(...(relative)...)...(?-1)...
(...(?+1)...(relative)...

An earlier example pointed out that the pattern

(sens|respons)e and \1ibility

matches "sense and sensibility" and "response and responsibility", but
not "sense and responsibility". If instead the pattern

(sens|respons)e and (?1)ibility

is used, it does match "sense and responsibility" as well as the other
two strings. Another example is given in the discussion of DEFINE
above.

All subroutine calls, whether recursive or not, are always treated as
atomic groups. That is, once a subroutine has matched some of the sub-
ject string, it is never re-entered, even if it contains untried alter-
natives and there is a subsequent matching failure. Any capturing
parentheses that are set during the subroutine call revert to their
previous values afterwards.

Processing options such as case-independence are fixed when a subpat-
tern is defined, so if it is used as a subroutine, such options cannot
be changed for different calls. For example, consider this pattern:

(abc)(?i:(?-1))

It matches "abcabc". It does not match "abcABC" because the change of
processing option does not affect the called subpattern.

ONIGURUMA SUBROUTINE SYNTAX

Appendices: PCRE Specifications 708

For compatibility with Oniguruma, the non-Perl syntax \g followed by a
name or a number enclosed either in angle brackets or single quotes, is
an alternative syntax for referencing a subpattern as a subroutine,
possibly recursively. Here are two of the examples used above, rewrit-
ten using this syntax:

(?<pn> \(((?>[^()]+) | \g<pn>)* \))
(sens|respons)e and \g'1'ibility

PCRE supports an extension to Oniguruma: if a number is preceded by a
plus or a minus sign it is taken as a relative reference. For example:

(abc)(?i:\g<-1>)

Note that \g{...} (Perl syntax) and \g<...> (Oniguruma syntax) are not
synonymous. The former is a back reference; the latter is a subroutine
call.

CALLOUTS

Perl has a feature whereby using the sequence (?{...}) causes arbitrary
Perl code to be obeyed in the middle of matching a regular expression.
This makes it possible, amongst other things, to extract different sub-
strings that match the same pair of parentheses when there is a repeti-
tion.

PCRE provides a similar feature, but of course it cannot obey arbitrary
Perl code. The feature is called "callout". The caller of PCRE provides
an external function by putting its entry point in the global variable
pcre_callout (8-bit library) or pcre[16|32]_callout (16-bit or 32-bit
library). By default, this variable contains NULL, which disables all
calling out.

Within a regular expression, (?C) indicates the points at which the
external function is to be called. If you want to identify different
callout points, you can put a number less than 256 after the letter C.
The default value is zero. For example, this pattern has two callout
points:

(?C1)abc(?C2)def

If the PCRE_AUTO_CALLOUT flag is passed to a compiling function, call-
outs are automatically installed before each item in the pattern. They
are all numbered 255. If there is a conditional group in the pattern
whose condition is an assertion, an additional callout is inserted just
before the condition. An explicit callout may also be set at this posi-
tion, as in this example:

(?(?C9)(?=a)abc|def)

Note that this applies only to assertion conditions, not to other types
of condition.

During matching, when PCRE reaches a callout point, the external func-
tion is called. It is provided with the number of the callout, the
position in the pattern, and, optionally, one item of data originally
supplied by the caller of the matching function. The callout function
may cause matching to proceed, to backtrack, or to fail altogether.

Appendices: PCRE Specifications 709

By default, PCRE implements a number of optimizations at compile time
and matching time, and one side-effect is that sometimes callouts are
skipped. If you need all possible callouts to happen, you need to set
options that disable the relevant optimizations. More details, and a
complete description of the interface to the callout function, are
given in the pcrecallout documentation.

BACKTRACKING CONTROL

Perl 5.10 introduced a number of "Special Backtracking Control Verbs",
which are still described in the Perl documentation as "experimental
and subject to change or removal in a future version of Perl". It goes
on to say: "Their usage in production code should be noted to avoid
problems during upgrades." The same remarks apply to the PCRE features
described in this section.

The new verbs make use of what was previously invalid syntax: an open-
ing parenthesis followed by an asterisk. They are generally of the form
(*VERB) or (*VERB:NAME). Some may take either form, possibly behaving
differently depending on whether or not a name is present. A name is
any sequence of characters that does not include a closing parenthesis.
The maximum length of name is 255 in the 8-bit library and 65535 in the
16-bit and 32-bit libraries. If the name is empty, that is, if the
closing parenthesis immediately follows the colon, the effect is as if
the colon were not there. Any number of these verbs may occur in a
pattern.

Since these verbs are specifically related to backtracking, most of
them can be used only when the pattern is to be matched using one of
the traditional matching functions, because these use a backtracking
algorithm. With the exception of (*FAIL), which behaves like a failing
negative assertion, the backtracking control verbs cause an error if
encountered by a DFA matching function.

The behaviour of these verbs in repeated groups, assertions, and in
subpatterns called as subroutines (whether or not recursively) is docu-
mented below.

Optimizations that affect backtracking verbs

PCRE contains some optimizations that are used to speed up matching by
running some checks at the start of each match attempt. For example, it
may know the minimum length of matching subject, or that a particular
character must be present. When one of these optimizations bypasses the
running of a match, any included backtracking verbs will not, of
course, be processed. You can suppress the start-of-match optimizations
by setting the PCRE_NO_START_OPTIMIZE option when calling pcre_com-
pile() or pcre_exec(), or by starting the pattern with (*NO_START_OPT).
There is more discussion of this option in the section entitled "Option
bits for pcre_exec()" in the pcreapi documentation.

Experiments with Perl suggest that it too has similar optimizations,
sometimes leading to anomalous results.

Verbs that act immediately

The following verbs act as soon as they are encountered. They may not
be followed by a name.

Appendices: PCRE Specifications 710

(*ACCEPT)

This verb causes the match to end successfully, skipping the remainder
of the pattern. However, when it is inside a subpattern that is called
as a subroutine, only that subpattern is ended successfully. Matching
then continues at the outer level. If (*ACCEPT) in triggered in a posi-
tive assertion, the assertion succeeds; in a negative assertion, the
assertion fails.

If (*ACCEPT) is inside capturing parentheses, the data so far is cap-
tured. For example:

A((?:A|B(*ACCEPT)|C)D)

This matches "AB", "AAD", or "ACD"; when it matches "AB", "B" is cap-
tured by the outer parentheses.

(*FAIL) or (*F)

This verb causes a matching failure, forcing backtracking to occur. It
is equivalent to (?!) but easier to read. The Perl documentation notes
that it is probably useful only when combined with (?{}) or (??{}).
Those are, of course, Perl features that are not present in PCRE. The
nearest equivalent is the callout feature, as for example in this pat-
tern:

a+(?C)(*FAIL)

A match with the string "aaaa" always fails, but the callout is taken
before each backtrack happens (in this example, 10 times).

Recording which path was taken

There is one verb whose main purpose is to track how a match was
arrived at, though it also has a secondary use in conjunction with
advancing the match starting point (see (*SKIP) below).

(*MARK:NAME) or (*:NAME)

A name is always required with this verb. There may be as many
instances of (*MARK) as you like in a pattern, and their names do not
have to be unique.

When a match succeeds, the name of the last-encountered (*MARK:NAME),
(*PRUNE:NAME), or (*THEN:NAME) on the matching path is passed back to
the caller as described in the section entitled "Extra data for
pcre_exec()" in the pcreapi documentation. Here is an example of
pcretest output, where the /K modifier requests the retrieval and out-
putting of (*MARK) data:

re> /X(*MARK:A)Y|X(*MARK:B)Z/K
data> XY
0: XY
MK: A
XZ
0: XZ
MK: B

The (*MARK) name is tagged with "MK:" in this output, and in this exam-

Appendices: PCRE Specifications 711

ple it indicates which of the two alternatives matched. This is a more
efficient way of obtaining this information than putting each alterna-
tive in its own capturing parentheses.

If a verb with a name is encountered in a positive assertion that is
true, the name is recorded and passed back if it is the last-encoun-
tered. This does not happen for negative assertions or failing positive
assertions.

After a partial match or a failed match, the last encountered name in
the entire match process is returned. For example:

re> /X(*MARK:A)Y|X(*MARK:B)Z/K
data> XP
No match, mark = B

Note that in this unanchored example the mark is retained from the
match attempt that started at the letter "X" in the subject. Subsequent
match attempts starting at "P" and then with an empty string do not get
as far as the (*MARK) item, but nevertheless do not reset it.

If you are interested in (*MARK) values after failed matches, you
should probably set the PCRE_NO_START_OPTIMIZE option (see above) to
ensure that the match is always attempted.

Verbs that act after backtracking

The following verbs do nothing when they are encountered. Matching con-
tinues with what follows, but if there is no subsequent match, causing
a backtrack to the verb, a failure is forced. That is, backtracking
cannot pass to the left of the verb. However, when one of these verbs
appears inside an atomic group or an assertion that is true, its effect
is confined to that group, because once the group has been matched,
there is never any backtracking into it. In this situation, backtrack-
ing can "jump back" to the left of the entire atomic group or asser-
tion. (Remember also, as stated above, that this localization also
applies in subroutine calls.)

These verbs differ in exactly what kind of failure occurs when back-
tracking reaches them. The behaviour described below is what happens
when the verb is not in a subroutine or an assertion. Subsequent sec-
tions cover these special cases.

(*COMMIT)

This verb, which may not be followed by a name, causes the whole match
to fail outright if there is a later matching failure that causes back-
tracking to reach it. Even if the pattern is unanchored, no further
attempts to find a match by advancing the starting point take place. If
(*COMMIT) is the only backtracking verb that is encountered, once it
has been passed pcre_exec() is committed to finding a match at the cur-
rent starting point, or not at all. For example:

a+(*COMMIT)b

This matches "xxaab" but not "aacaab". It can be thought of as a kind
of dynamic anchor, or "I've started, so I must finish." The name of the
most recently passed (*MARK) in the path is passed back when (*COMMIT)
forces a match failure.

Appendices: PCRE Specifications 712

If there is more than one backtracking verb in a pattern, a different
one that follows (*COMMIT) may be triggered first, so merely passing
(*COMMIT) during a match does not always guarantee that a match must be
at this starting point.

Note that (*COMMIT) at the start of a pattern is not the same as an
anchor, unless PCRE's start-of-match optimizations are turned off, as
shown in this output from pcretest:

re> /(*COMMIT)abc/
data> xyzabc
0: abc
data> xyzabc\Y
No match

For this pattern, PCRE knows that any match must start with "a", so the
optimization skips along the subject to "a" before applying the pattern
to the first set of data. The match attempt then succeeds. In the sec-
ond set of data, the escape sequence \Y is interpreted by the pcretest
program. It causes the PCRE_NO_START_OPTIMIZE option to be set when
pcre_exec() is called. This disables the optimization that skips along
to the first character. The pattern is now applied starting at "x", and
so the (*COMMIT) causes the match to fail without trying any other
starting points.

(*PRUNE) or (*PRUNE:NAME)

This verb causes the match to fail at the current starting position in
the subject if there is a later matching failure that causes backtrack-
ing to reach it. If the pattern is unanchored, the normal "bumpalong"
advance to the next starting character then happens. Backtracking can
occur as usual to the left of (*PRUNE), before it is reached, or when
matching to the right of (*PRUNE), but if there is no match to the
right, backtracking cannot cross (*PRUNE). In simple cases, the use of
(*PRUNE) is just an alternative to an atomic group or possessive quan-
tifier, but there are some uses of (*PRUNE) that cannot be expressed in
any other way. In an anchored pattern (*PRUNE) has the same effect as
(*COMMIT).

The behaviour of (*PRUNE:NAME) is the not the same as
(*MARK:NAME)(*PRUNE). It is like (*MARK:NAME) in that the name is
remembered for passing back to the caller. However, (*SKIP:NAME)
searches only for names set with (*MARK).

(*SKIP)

This verb, when given without a name, is like (*PRUNE), except that if
the pattern is unanchored, the "bumpalong" advance is not to the next
character, but to the position in the subject where (*SKIP) was encoun-
tered. (*SKIP) signifies that whatever text was matched leading up to
it cannot be part of a successful match. Consider:

a+(*SKIP)b

If the subject is "aaaac...", after the first match attempt fails
(starting at the first character in the string), the starting point
skips on to start the next attempt at "c". Note that a possessive quan-
tifer does not have the same effect as this example; although it would
suppress backtracking during the first match attempt, the second
attempt would start at the second character instead of skipping on to

Appendices: PCRE Specifications 713

"c".

(*SKIP:NAME)

When (*SKIP) has an associated name, its behaviour is modified. When it
is triggered, the previous path through the pattern is searched for the
most recent (*MARK) that has the same name. If one is found, the
"bumpalong" advance is to the subject position that corresponds to that
(*MARK) instead of to where (*SKIP) was encountered. If no (*MARK) with
a matching name is found, the (*SKIP) is ignored.

Note that (*SKIP:NAME) searches only for names set by (*MARK:NAME). It
ignores names that are set by (*PRUNE:NAME) or (*THEN:NAME).

(*THEN) or (*THEN:NAME)

This verb causes a skip to the next innermost alternative when back-
tracking reaches it. That is, it cancels any further backtracking
within the current alternative. Its name comes from the observation
that it can be used for a pattern-based if-then-else block:

(COND1 (*THEN) FOO | COND2 (*THEN) BAR | COND3 (*THEN) BAZ) ...

If the COND1 pattern matches, FOO is tried (and possibly further items
after the end of the group if FOO succeeds); on failure, the matcher
skips to the second alternative and tries COND2, without backtracking
into COND1. If that succeeds and BAR fails, COND3 is tried. If subse-
quently BAZ fails, there are no more alternatives, so there is a back-
track to whatever came before the entire group. If (*THEN) is not
inside an alternation, it acts like (*PRUNE).

The behaviour of (*THEN:NAME) is the not the same as
(*MARK:NAME)(*THEN). It is like (*MARK:NAME) in that the name is
remembered for passing back to the caller. However, (*SKIP:NAME)
searches only for names set with (*MARK).

A subpattern that does not contain a | character is just a part of the
enclosing alternative; it is not a nested alternation with only one
alternative. The effect of (*THEN) extends beyond such a subpattern to
the enclosing alternative. Consider this pattern, where A, B, etc. are
complex pattern fragments that do not contain any | characters at this
level:

A (B(*THEN)C) | D

If A and B are matched, but there is a failure in C, matching does not
backtrack into A; instead it moves to the next alternative, that is, D.
However, if the subpattern containing (*THEN) is given an alternative,
it behaves differently:

A (B(*THEN)C | (*FAIL)) | D

The effect of (*THEN) is now confined to the inner subpattern. After a
failure in C, matching moves to (*FAIL), which causes the whole subpat-
tern to fail because there are no more alternatives to try. In this
case, matching does now backtrack into A.

Note that a conditional subpattern is not considered as having two
alternatives, because only one is ever used. In other words, the |
character in a conditional subpattern has a different meaning. Ignoring

Appendices: PCRE Specifications 714

white space, consider:

^.*? (?(?=a) a | b(*THEN)c)

If the subject is "ba", this pattern does not match. Because .*? is
ungreedy, it initially matches zero characters. The condition (?=a)
then fails, the character "b" is matched, but "c" is not. At this
point, matching does not backtrack to .*? as might perhaps be expected
from the presence of the | character. The conditional subpattern is
part of the single alternative that comprises the whole pattern, and so
the match fails. (If there was a backtrack into .*?, allowing it to
match "b", the match would succeed.)

The verbs just described provide four different "strengths" of control
when subsequent matching fails. (*THEN) is the weakest, carrying on the
match at the next alternative. (*PRUNE) comes next, failing the match
at the current starting position, but allowing an advance to the next
character (for an unanchored pattern). (*SKIP) is similar, except that
the advance may be more than one character. (*COMMIT) is the strongest,
causing the entire match to fail.

More than one backtracking verb

If more than one backtracking verb is present in a pattern, the one
that is backtracked onto first acts. For example, consider this pat-
tern, where A, B, etc. are complex pattern fragments:

(A(*COMMIT)B(*THEN)C|ABD)

If A matches but B fails, the backtrack to (*COMMIT) causes the entire
match to fail. However, if A and B match, but C fails, the backtrack to
(*THEN) causes the next alternative (ABD) to be tried. This behaviour
is consistent, but is not always the same as Perl's. It means that if
two or more backtracking verbs appear in succession, all the the last
of them has no effect. Consider this example:

...(*COMMIT)(*PRUNE)...

If there is a matching failure to the right, backtracking onto (*PRUNE)
causes it to be triggered, and its action is taken. There can never be
a backtrack onto (*COMMIT).

Backtracking verbs in repeated groups

PCRE differs from Perl in its handling of backtracking verbs in
repeated groups. For example, consider:

/(a(*COMMIT)b)+ac/

If the subject is "abac", Perl matches, but PCRE fails because the
(*COMMIT) in the second repeat of the group acts.

Backtracking verbs in assertions

(*FAIL) in an assertion has its normal effect: it forces an immediate
backtrack.

(*ACCEPT) in a positive assertion causes the assertion to succeed with-
out any further processing. In a negative assertion, (*ACCEPT) causes
the assertion to fail without any further processing.

Appendices: PCRE Specifications 715

The other backtracking verbs are not treated specially if they appear
in a positive assertion. In particular, (*THEN) skips to the next
alternative in the innermost enclosing group that has alternations,
whether or not this is within the assertion.

Negative assertions are, however, different, in order to ensure that
changing a positive assertion into a negative assertion changes its
result. Backtracking into (*COMMIT), (*SKIP), or (*PRUNE) causes a neg-
ative assertion to be true, without considering any further alternative
branches in the assertion. Backtracking into (*THEN) causes it to skip
to the next enclosing alternative within the assertion (the normal be-
haviour), but if the assertion does not have such an alternative,
(*THEN) behaves like (*PRUNE).

Backtracking verbs in subroutines

These behaviours occur whether or not the subpattern is called recur-
sively. Perl's treatment of subroutines is different in some cases.

(*FAIL) in a subpattern called as a subroutine has its normal effect:
it forces an immediate backtrack.

(*ACCEPT) in a subpattern called as a subroutine causes the subroutine
match to succeed without any further processing. Matching then contin-
ues after the subroutine call.

(*COMMIT), (*SKIP), and (*PRUNE) in a subpattern called as a subroutine
cause the subroutine match to fail.

(*THEN) skips to the next alternative in the innermost enclosing group
within the subpattern that has alternatives. If there is no such group
within the subpattern, (*THEN) causes the subroutine match to fail.

SEE ALSO

pcreapi(3), pcrecallout(3), pcrematching(3), pcresyntax(3), pcre(3),
pcre16(3), pcre32(3).

AUTHOR

Philip Hazel
University Computing Service
Cambridge CB2 3QH, England.

REVISION

Last updated: 08 January 2014
Copyright (c) 1997-2014 University of Cambridge.

Appendices: PCRE Specifications 716

Symbolic Index 717

Symbolic Index

+
See add,
conjugate,
plus

-
See minus,
negate,
subtract

×
See multiply,
signum, times

÷
See divide,
reciprocal

⌹
See matrix
divide, matrix
inverse

|
See
magnitude,
residue

⌈
See ceiling,
maximum

⌊
See floor,
minimum

*
See
exponential,
power

⍟

See
logarithm,
natural
logarithm

< See less
> See greater

≤
See less or
equal

≥
See greater or
equal

= See equal
≠ See not equal

≡
See depth,
match

≢
See not
match, tally

~
See
excluding,
not, without

^
See and, caret
pointer

∨ See or
⍲ See nand
⍱ See nor

∪
See union,
unique

∩
See
intersection

⊂

See enclose,
partition,
partitioned
enclose

⊆
See nest,
partition

⊃
See disclose,
mix, pick

? See deal, roll

!
See binomial,
factorial

⍋ See grade up

⍒
See grade
down

⍎ See execute
⍕ See format
⊥ See decode
⊤ See encode
⊣ See same, left
⊢ See same,

Symbolic Index 718

right

○
See circular,
pi times

⍉ See transpose

⌽
See reverse,
rotate

⊖
See reverse
first, rotate
first

,
See catenate,
laminate,
ravel

⍪
See catenate
first, table

⍳
See index
generator,
index of

⍸
See where,
interval index

⍴
See reshape,
shape

∊
See enlist,
membership,
type

⍷ See find

↑
See disclose,
mix, take

↓ See drop, split

←
See
assignment

→
See abort,
branch

.

See name
separator,
decimal point,
inner product

∘.
See outer
product

⍤ See rank
∘ See compose
, See compress,

replicate,
reduce

⌿
See replicate
first, reduce
first

\
See expand,
scan

⍀
See expand
first, scan first

¨ See each
⍨ See commute
& See spawn

⍣
See power
operator

⍠ See variant
⌸ See key
@ See at
⌺ See stencil
⌶ See i-beam
⍬ See zilde

¯
See negative
sign

_
See underbar
character

∆
See delta
character

⍙
See delta-
underbar
character

'' See quotes

⌷
See index,
axis

[]
See indexing,
axis

()
See
parentheses

{} See braces

⍺
See left
argument

⍺⍺ See left

Symbolic Index 719

operand

⍵
See right
argument

⍵⍵
See right
operand

#
See Root
object

##
See parent
object

⋄
See statement
separator

⍝
See comment
symbol

∇
See function
self, del editor

∇∇
See operator
self

;

See name
separator,
array
separator

:
See label
colon

:AndIf
See and if
condition

:Access
See access
statement

:Case
See case
qualifier

:CaseList
See caselist
qualifier

:Class
See class
statement

:Continue
See continue
branch

:Else
See else
qualifier

:ElseIf
See else-if
condition

:End
See general
end control

:EndClass See endclass

statement

:EndFor
See end-for
control

:EndHold
See end-hold
control

:EndIf
See end-if
control

:EndNamespace
See
endnamespace

:EndProperty
See
endproperty
statement

:EndRepeat
See end-
repeat control

:EndSelect
See end-select
control

:EndTrap
See end-trap
control

:EndWhile
See end-while
control

:EndWith
See end-with
control

:Field
See field
statement

:For
See for
statement

:GoTo
See go-to
branch

:Hold
See hold
statement

:Include
See include
statement

:If
See if
statement

:Implements
See
implements
statement

:In See in control

:InEach
See ineach
control

:Interface
See interface
statement

Symbolic Index 720

:Leave
See leave
branch

:Namespace
See
namespace
statement

:OrIf
See or-if
condition

:Property
See property
statement

:Repeat
See repeat
statement

:Require
See require
statement

:Return
See return
branch

:Section
See section
statement

:Select
See select
statement

:Trap
See trap
statement

:Until
See until
condition

:While
See while
statement

:With
See with
statement

⍞
See quote-
quad,
character I\O

⎕
See quad,
evaluated I\O

⎕Á
See
underscored
alphabet

⎕A See alphabet

⎕AI
See account
information

⎕AN
See account
name

⎕ARBIN
See arbitrary
input

⎕ARBOUT
See arbitrary
output

⎕AT See attributes

⎕AV
See atomic
vector

⎕AVU
See atomic
vector -
unicode

⎕BASE See base class
⎕CLASS See class

⎕CLEAR
See clear
workspace

⎕CMD

See execute
Windows
command,
start AP

⎕CR
See canonical
representation

⎕CS
See change
space

⎕CSV
See comma
separated
values

⎕CT
See
comparison
tolerance

⎕CY
See copy
workspace

⎕D See digits

⎕DCT
See decimal
comparison
tolerance

⎕DF
See display
form

⎕DIV
See division
method

⎕DL See delay

⎕DM
See
diagnostic
message

⎕DQ See dequeue

Symbolic Index 721

events

⎕DR
See data
representation

⎕ED
See edit
object

⎕EM
See event
message

⎕EN
See event
number

⎕EX
See expunge
object

⎕EXCEPTION See exception

⎕EXPORT
See export
object

⎕FAPPEND
See file
append
component

⎕FAVAIL
See file
available

⎕FCHK
See file check
and repair

⎕FCOPY See file copy
⎕FCREATE See file create

⎕FDROP
See file drop
component

⎕FERASE See file erase
⎕FHOLD See file hold

⎕FHIST
See file
history

⎕FIX See fix script

⎕FLIB
See file
library

⎕FMT See format
⎕FNAMES See file names

⎕FNUMS
See file
numbers

⎕FPROPS
See file
properties

⎕FR
See floating-
point

representation

⎕FRDAC
See file read
access matrix

⎕FRDCI
See file read
component
information

⎕FREAD
See file read
component

⎕FRENAME
See file
rename

⎕FREPLACE
See file
replace
component

⎕FRESIZE See file resize
⎕FSIZE See file size

⎕FSTAC
See file set
access matrix

⎕FSTIE
See file share
tie

⎕FTIE See file tie
⎕FUNTIE See file untie

⎕FX
See fix
definition

⎕INSTANCES See instances

⎕IO
See index
origin

⎕JSON
See json
convert

⎕KL See key label

⎕LC
See line
counter

⎕LOAD
See load
workspace

⎕LOCK
See lock
definition

⎕LX
See latent
expression

⎕MAP See map file

⎕MKDIR
See make
directory

Symbolic Index 722

⎕ML
See migration
level

⎕MONITOR See monitor

⎕NA
See name
association

⎕NAPPEND
See native file
append

⎕NC
See name
class

⎕NCOPY
See native file
copy

⎕NCREATE
See native file
create

⎕NDELETE
See native file
delete

⎕NERASE
See native file
erase

⎕NEW
See new
instance

⎕NEXISTS
See native file
exists

⎕NGET
See read text
file

⎕NINFO
See native file
information

⎕NL See name list

⎕NLOCK
See native file
lock

⎕NMOVE
See native file
move

⎕NNAMES
See native file
names

⎕NNUMS
See native file
numbers

⎕NPARTS See file parts

⎕NPUT
See write text
file

⎕NQ
See enqueue
event

⎕NR
See nested
representation

⎕NREAD
See native file
read

⎕NRENAME
See native file
rename

⎕NREPLACE
See native file
replace

⎕NRESIZE
See native file
resize

⎕NS
See
namespace

⎕NSI
See
namespace
indicator

⎕NSIZE
See native file
size

⎕NTIE
See native file
tie

⎕NULL See null item

⎕NUNTIE
See native file
untie

⎕NXLATE
See native file
translate

⎕OFF
See sign off
APL

⎕OPT See variant

⎕OR
See object
representation

⎕PATH
See search
path

⎕PFKEY
See program
function key

⎕PP
See print
precision

⎕PROFILE
See profile
application

⎕PW
See print
width

⎕R See replace

⎕REFS
See cross
references

⎕RL See random

Symbolic Index 723

link

⎕RSI
See space
indicator

⎕RTL
See response
time limit

⎕S See search

⎕SAVE
See save
workspace

⎕SD
See screen
dimensions

⎕SE
See session
namespace

⎕SH

See execute
shell
command,
start AP

⎕SHADOW
See shadow
name

⎕SI
See state
indicator

⎕SIGNAL
See signal
event

⎕SIZE
See size of
object

⎕SM
See screen
map

⎕SR
See screen
read

⎕SRC See source

⎕STACK
See state
indicator
stack

⎕STATE
See state of
object

⎕STOP
See stop
control

⎕SVC
See shared
variable
control

⎕SVO
See shared
variable offer

⎕SVQ
See shared
variable query

⎕SVR
See shared
variable
retract

⎕SVS
See shared
variable state

⎕TC
See terminal
control

⎕TCNUMS
See thread
child numbers

⎕TGET
See get
tokens

⎕THIS See this space

⎕TID
See thread
identity

⎕TKILL
See thread
kill

⎕TNAME
See thread
name

⎕TNUMS
See thread
numbers

⎕TPOOL
See token
pool

⎕TPUT
See put
tokens

⎕TRACE
See trace
control

⎕TRAP See trap event

⎕TREQ
See token
requests

⎕TS
See time
stamp

⎕TSYNC
See threads
synchronise

⎕UCS
See unicode
convert

⎕USING
See using
path

⎕VFI
See verify and
fix input

Symbolic Index 724

⎕VR
See vector
representation

⎕WA
See
workspace
available

⎕WC
See window
create object

⎕WG
See window
get property

⎕WN
See window
child names

⎕WS
See window
set property

⎕WSID
See
workspace
identification

⎕WX
See window
expose names

⎕XML
See xml
convert

⎕XSI
See extended
state indicator

⎕XT
See external
variable

)CLASSES
See list
classes

)CLEAR
See clear
workspace

)CMD See command

)CONTINUE
See continue
off

)COPY
See copy
workspace

)CS
See change
space

)DROP
See drop
workspace

)ED
See edit
object

)ERASE
See erase
object

)EVENTS See list events

)FNS
See list
functions

)HOLDS
See held
tokens

)LIB
See
workspace
library

)LOAD
See load
workspace

)METHODS
See list
methods

)NS
See
namespace

)OBJECTS
See list
objects

)OBS
See list
objects

)OFF
See sign off
APL

)OPS
See list
operators

)PCOPY
See protected
copy

)PROPS
See list
properties

)RESET
See reset state
indicator

)SAVE
See save
workspace

)SH
See shell
command

)SI
See state
indicator

)SINL
See state
indicator
name

)TID
See thread
identity

)VARS
See global
defined
variables

Symbolic Index 725

)WSID
See
workspace
identity

)XLOAD
See quiet-load
workspace

726 Language Reference Guide

Index 727

Index

A

abort function 10
absolute value 90
access codes 380-384, 386
Account Information 280
Account Name 280
add arithmetic function 11
alphabetic characters 279
ancestors 505
and Boolean function 12
APL

characters 288
appending components to files 346
appending to native file 438
arbitrary input 281
arbitrary output 283
array separator 16, 76
arrays

dimensions of 124
indexing 76
prototypes of 8
rank of 124
unit 4

assignment 13
indexed 16
indexed modified 140
modified by functions 139
re-assignment 15
selective 21
selective modified 141
simple 13

at operator 142
atomic vector 288
atomic vector - unicode 288, 320, 405, 492,
500, 635
attributes of operations 284
auto_pw parameter 516
auxiliary processors 299

axis operator 9
with dyadic operands 147
with monadic operands 146

axis specification 9, 137

B

base class 291
base name 482
best fit approximation 93
beta function 23
binomial function 23
BOM 465, 484
Boolean functions

and (conjunction) 12
nand 101
nor 103
not 104
not-equal (exculsive disjunction) 104
or (inclusive disjunction) 106

bracket indexing 76
branch function 24
bridge dll 597
byte order mark 465, 484, 519

C

callback functions 335, 487
canonical representation 194
canonical representation of operations 300
caret pointer 327
case convert 204
catenate function 26
ceiling function 28
CellsChanged event 231
CFEXT parameter 347, 350, 352, 381, 385-
386
change user 247
changing namespaces 302, 638
character input/output 275
checksum 372, 374
child names 606
child threads 579
choose indexed assignment 18
choose indexing 78
circular functions 29
class (system function) 292

Index 728

classes
base class 291
casting 293
class system function 292
copying 635
display form 323
external interfaces 450
fields 440
fix script 359
instances 388
list classes 631
name-class 449-450
new instance 461
properties 441
source 565
this space 581

Classic Edition 62, 81, 103, 107, 134, 158,
166, 176, 183, 204, 288, 338, 400, 404, 490,
500, 528, 578
classification of names 439
clear state indicator 648, 654
clearing workspaces 294, 631
Close .NET AppDomain 237
close all windows 235
CMD_POSTFIX parameter 633, 651
CMD_PREFIX parameter 633, 651
comma separated values 305
command operating system 632
command processor 295, 632
commute operator 150
comparison tolerance 319
compiler control 200
complex numbers

circular functions 29
floating-point representation 378

component files
checksum 372, 374
compression 375
file properties 372
journaling 373
unicode 372

composition operator
form I 151
form II 152
form III 153
form IV 153

compress operation 115

compress/decompress vector of short
integers 197
compression 372, 375
Compute Time 280
conformability of arguments 8
conjunction 12
Connect Time 280
continue off 633
Coord property 235
copying component files 350
copying from other workspaces 320, 634
coying native files 451
CPU time 410
create .NET delegate 233
create data binding source 222
creating component files 352
creating GUI objects 602
creating namespaces 645
creating native files 456
cross references 539
current thread identity 582
current working directory 483
currying 136
cutback error trap 587

D

data binding 222
data representation

dyadic 337
monadic 336

deal random function 31
decimal comparison tolerance 322
Decimal option 308, 315
default property 70
default_wx parameter 609
delay times 327
deprecated features

atomic vector 288
terminal control 578
underscored alphabet 279

dequeuing events 333
derived functions 135, 444
dfns

error guards 203
diagnostic messages 327
digits 0 to 9 322

Index 729

dimensions of arrays 124
direction function 35
discard parked threads 239
discard thread on exit 239
disclose function 36
disjunction 106
display form 323
displaying held tokens 642
divide arithmetic function 37
division methods 326
dmx 328, 553
DOMAIN ERROR 534
DotAll option 528
DoubleQuote option 305, 308-309, 315-316
drop function 38

with axes 39
dropping components from files 354
dropping workspaces 638
dyadic primitive functions

add 11
and 12
catenate 26
deal 31
divide 37
drop 38
encode 42
execute 47
expand 48
expand-first 49
find 50
format 56
grade down 59
grade up 65
greater 66
greater or equal 67
greatest common divisor 106
index function 68
index of 73
intersection 80
interval index 81
left 88
less 89
less or equal 89
logarithm 90
match 91
matrix divide 92
maximum 95
member of 95

minimum 95
nand 101
nor 103
not equal 104
not match 105
or . 106
partition 107
partitioned enclose 109
pick 110
power 111
replicate 115
reshape 117
residue 117
right 119
rotate 121
subtract 125
take 127
transpose 130
unique 133

dyadic primitive operators
at 142
axis 146-147
compose 151-153
currying 136
each 155
inner product 157
key 158
outer product 162
rank 166
replace 517
search 517
stencil 176
variant 183, 308, 315, 451, 456, 458, 463,

467, 477, 500, 517, 526
dyadic scalar functions 4
DYALOG_PIXEL_TYPE parameter 235
dynamic data exchange 573
dynamic link libraries 411

E

each operator
with dyadic operands 155
with monadic operands 154

editing APL objects 339, 639
editor 339
ElementChanged event 231

Index 730

empty vectors 134
Enc option 532
enclose function 40

with axes 41
encode function 42
enlist function 44
enqueuing an event 486
EOL option 528
equal relational function 45
erasing component files 355
erasing native files 460
erasing objects from workspaces 343, 640
error guards 203
error trapping system variable 587
EscapeChar option 305, 308-309, 315-316
evaluated input/output 277
event messages 341
event numbers 341
events,CellsChanged 231
events,ElementChanged 231
exception 342
excluding set function 46
exclusively tying files 386
execute error trap 587
execute expression 192
execute operation 47
executing commands

UNIX 549, 651
Windows 295, 632

execution stack 552, 625
exit code 500
exiting APL system 500, 646
expand-first operation 49
expand operation 48

with axis 48
Experimental I-Beams 258
exponential function 49
exporting objects 345
expose root properties 238
exposing properties 609
expunge objects 343
extended diagnostic message 328, 553
extended state indicator 625
extension 482
external arrays 626
external functions 299
external interfaces 450

external variables
query 628
set 626

External Workspaces 258

F

factorial function 49
fields 440
file

append component 346
available 346
check and repair 347
copy 350
create 352
drop component 354
erase 355
history 355
hold 357
library 361
names 370
numbers 371
read access matrix 378
read component 380
read component information 379
rename 381
replace component 382
resize 383
set access matrix 384
share-tie 385
size 384
tie (number) 386
untie 387

file access error 459
file history 355
file properties 372
file system availability 346
files

APL component files 350, 352
mapped 403
operating system native files 451, 456,

477
fill elements 8
Fill option 308
find function 50
first function 51
fix script 359

Index 731

fixing operation definitions 387
floating-point representation 322, 376

complex numbers 378
floor function 51
flush session caption 234
Follow option 467
force parameter 649
fork new task 246
format function

dyadic 56
monadic 52

format specification 363
format system function

affixtures 365
digit selectors 367
G-format 367
O-format qualifier 368
qualifiers 364
text insertion 363

formatting system function
dyadic 363
monadic 362

function assignment 14
function keys 507
functions

mixed rank 5
pervasive 2
primitive 2
rank zero 2
scalar rank 2

G

gamma function 49
generating random numbers 540
get tokens 579
getting properties of GUI objects 605
grade-down function

dyadic 59
monadic 58

grade-up function
dyadic 65
monadic 62

greater-or-equal function 67
greater-than relational function 66
greatest common divisor 106
Greedy option 530

GUI objects 333

H

hash array 210
held tokens 642
holding component files 357

I

i-beam 156, 187
canonical representation 194
case convert 204
change user 247
close all windows 235
compiler control 200
compress/decompress vector of short

integers 197
create .NET delegate 233
execute expression 192
expose root properties 238
flush session caption 234
fork new task 246
inverted table index of 190
JSON translate name 255
loaded libraries 207
mark thread as uninterruptible 240
memory manager statistics 212
number of threads 208
overwrite free pockets 193
parallel execution threshold 208
read dataTable 219
reap forked tasks 248
remove data binding 221
serialise/deserialise arrays 199
set workspace save options 237
signal counts 250
specify workspace available 215
syntax colour tokens 196
syntax colouring 195
unsqueezed type 194
update DataTable 216
update function time stamp 209
use separate thread for .NET 241

IC option 183, 526
identification of workspaces 656
identity function 30

Index 732

identity matrix 94
IfExists option 315, 452, 456, 478
index

with axes 71
index-generator function 72
index-of function 73
index function 68
index of 190
index origin 389
indexed assignment 16
indexed modified assignment 140
indexing arrays 76
InEnc option 531
inner-product operator 157
instances 388, 447
interfaces 449
INTERRUPT 165
intersection set function 80
interval index function 81
Invert option 308-309
inverted table index of 190
iota 72

J

journaling 372-373
json convert 390
json name mangling 399
JSON translate name 255

K

key labels 400
key operator 158
Keying Time 280
kill threads 582

L

labels 24
laminate function 26
latent expressions 403
least squares solution 93
left 88
legal names 602
less-or-equal function 89

less-than relational function 89
levels of migration towards APL2 1
libraries of component files 361
line number counter 400
LineEnding option 315
list classes 631
list names in a class 471
listing global defined functions 641
listing global defined operators 646
listing global namespaces 646
listing global objects 646
listing global variables 656
listing GUI events 640
listing GUI methods 645
listing GUI properties 648
loaded libraries 207
loading workspaces 401, 644

without latent expressions 657
localisation 551
lock native file 475
locking defined operations 402
logarithm function 90
logical conjunction 12
logical disjunction 106
logical equivalence 91
logical negation 104
logical operations 12

M

magnitude function 90
major cell 73, 85, 133
map file 403
mark thread as uninterruptible 240
markup 621
match relational function 91
matrix-divide function 92
matrix-inverse function 94
matrix product 92
maximum function 95
MAXWS parameter 213
membership set function 95
MEMCPY 428
memory manager statistics 212
migration levels 1, 36, 44, 96, 132, 407
minimum function 95
minus arithmetic function 95

Index 733

miscellaneous primitive functions 5
mix function 96

with axis 96
mixed rank functions 5
ML option 529
Mode option 183, 527, 534
modified assignment 139
monadic primitive functions

branch 24
ceiling 28
direction 35
disclose 36
enclose 40
enlist 44
execute 47
exponential 49
factorial 49
floor 51
format 52
grade down 58
grade up 62
identity 30
index generator 72
magnitude 90
matrix inverse 94
mix 96
natural logarithm 102
negative 102
nest 103
not 104
pi times 110
ravel 112
reciprocal 115
reverse 118
roll 120
same 123
shape 124
signum 35
split 125
table 126
tally 129
transpose 129
type 132
union 132
where 134

monadic primitive operators
assignment 139-141
commute 150

each 154
reduce 169, 171-172
reduce n-wise 172
scan 173-174
spawn 175

monadic scalar functions 3
monitor

query 410
set 409

moving native files 477
MPUT utility 403
multiply arithmetic function 101

N

name association 411, 444
name classifications 439
name lists by classification 471
name mangling 413
name of thread 583
name references in operations 539
names

legal 602
names of tied component files 370
names of tied native files 481
namespace indicator 495
namespace reference 15, 302, 333, 605, 607
namespace reference assignment 15
namespace script 447
namespaces

create 645
creating,namespaces

merging,creating namespaces 493
search path 505
this space 581
unnamed 493

nand Boolean function 101
Naperian logarithm function 102
natch 105
native file

append 438
copy 451
create 456
delete 458
erase 460
information 467
lock 475

Index 734

move 477
name parts 482
names 481
numbers 481
read 463, 489
read text 464
rename 491
replace 491
resize 492
size 495
tie 496
translate 499
untie 499
write text 484

natural logarithm function 102
ndelete 458
negate 102
negative function 102
NEOL option 529
nest function 103
nested representation of operations 488
new instance 461
nexists 463
next error trap 587
nget 464
niladic primitive functions

abort 10
zilde 134

ninfo 467
NONCE ERROR 70
nor Boolean function 103
not-equal relational function 104
not-match relational function 105
not Boolean function 104
notation

keys 1
nparts 482
nput 484
nread 489
nsi 495
ntie 496
null 498
null item 498
number of each thread 583
number of threads 208
numbers

empty vectors 134
numbers of tied component files 371

numbers of tied native files 481

O

object representation of operations 501
OM option 530
operands 135
operator syntax 135
operators

dyadic 135
monadic 135
syntax 135

or Boolean function 106
OutEnc option 532
outer-product operator 162
overwrite free pockets 193

P

parallel execution
number of threads 208
parallel execution threshold 208

parallel execution threshold 208
partition function 107
partitioned enclose function 109

with axis 109
pass-through values 139
passnumbers of files 380
path 482
PCRE 517
PCRE Regular Expression Details 667
pervasive functions 2
pi-times function 110
pick function 110
plus arithmetic function 111
power function 111
PreserveAttributes option 452
primitive function classifications 5
primitive functions 2
primitive operators 135

at 142
axis 146-147
commute 150
compose 151-153
each 154-155
indexed modified assignment 140
inner product 157

Index 735

key 158
modified assignment 139
outer product 162
power 163
rank 166
reduce 169
reduce-first 171-172
reduce n-wise 172
replace 517
scan 173
scan-first 174
search 517
selective modified assignment 141
spawn 175
stencil 176
variant 183, 500, 517

Principal option 183-184, 308, 315, 390, 451,
456, 458, 463, 467, 477, 526
print precision in session 508
print width in session 516
product

inner 157
outer 162

profile application 509
profile user command 514
programming function keys 507
properties 441-442

propertyget Function 70
propertyset function 70

protected copying fromworkspaces 647
prototype 8, 154-155, 162
put tokens 584

Q

quad indexing 71
quadna 435
quadna.dws 411
quietly loading workspaces 657
QuoteChar option 305, 308-309, 315-316

R

Ragged option 308
random link 540
rank of arrays 124
rank operator 166

ravel function 112
with axes 112

re-assignment 15
reach indexed assignment 19
reach indexing 79
read DataTable 219
read text file 464
reading components from files 380
reading file access matrices 378
reading file component information 379
reading native files 489
reading properties of GUI objects 605
reading screen maps 561
RealPixel 235
reap forked tasks 248
reciprocal function 115
Records option 308
Recurse option 467
reduce-first operator 171

n-wise 172
reduce operator 169

n-wise 172
regular expressions 517
releasing component files 357
remove data binding 221
RenameOnly option 478
renaming component files 381
renaming native files 491
replace operator 517

DotAll 528
Enc 532
EOL 528
Greedy 530
IC 183, 526
InEnc 531
ML 529
Mode 183, 527, 534
NEOL 529
OutEnc 532

replacing components on files 382
replacing data in native files 491
replicate operation 115

with axis 115
Reset error-related system constants 554
reset state indicator 648, 654
reshape function 117
residue function 117
resizing component files 383

Index 736

resizing native files 492
response time limit 546
reverse-first function 118, 122
reverse function 118

with axis 118
RIDE_SPAWNED parameter 298, 549, 564,
633, 651
right 119
Right Parenthesis 629
roll random function 120
rotate function 121

with axis 121
rsi 545

S

same 123
save workspace 547, 649

continue 633
force parameter 649

scalar extension 4
scalar functions 2
ScaledPixel 235
scan-first operator 174
scan operator 173

with axis 173
screen dimensions 548
screen maps 558
screen read 561
search operator 517

DotAll 528
Enc 532
EOL 528
Greedy 530
IC 183, 526
InEnc 531
ML 529
Mode 183, 527, 534
NEOL 529
OM 530
OutEnc 532

search path 505, 597
selection primitive functions 5
selective assignment 21
selective modified assignment 141
selector primitive functions 5
Separator option 308, 315-316

serialise/deserialise arrays 199
session namespace 548
set difference 46
set workspace save options 237
setting properties of GUI objects 607
shadowing names 551
shape function 124
share-tying files 385
shared variables

offer couplings 573
query access control 572
query couplings 575
query outstanding offers 576
retract offers 576
set access control 571
states 577

signal counts 250
signal event 553, 723
signing off APL 500, 646
signum function 35
simple assignment 13
simple indexed assignment 16
simple indexing 76
singular value decomposition 256
size of objects 557
sizes of component files 384
sizes of native files 495
source 565
spawn thread operator 175
special primitive functions 5
specification

axis 9, 137
specify workspace available 215
split function 125

with axis 125
squad indexing 68
stack 566
starting auxiliary processors

UNIX 550
Windows 299

state indicator 552, 652
and name list 654
clear 648, 654
extension 625
reset 648, 654
stack 566
tid parameter 652

states of objects 568

Index 737

stencil operator 176
stop control

query 570
set 569

stop error trap 587
STRLEN 430
STRNCPY 429
STRNCPYA 430
STRNCPYW 430
structural primitive functions 5
subtract arithmetic function 125
symbolic link 458, 463, 467-468
syntax colour tokens 196
syntax colouring 195
system commands 629
system constants 261
system functions 259, 265

categorised 265
system namespaces 264
system operators 264

T

table function 126
take function 127

with axes 128
tally 129
terminal control vector 578
this space 581
Thousands option 308, 315
thread

name 583
threads

child numbers 579
identity 582
kill 582
numbers 583, 591
spawn 175
synchronise 593

tid parameter 652
tie numbers 371, 481
time stamp 592
times arithmetic function 129
timestamp 592
token pool 583
token requests 591

tokens
get tokens 579
put tokens 584
time-out 579
token pool 583
token requests 591

tracing lines in defined operations
query 586
set 585

train 444
translating native files 499
TRANSLATION ERROR 290, 320, 405, 528,
635
transpose function

dyadic 130
monadic 129

transposition of axes 130
trapping error conditions 587
Trim option 308, 315
tying component files 385-386
tying native files 496
type function 132

U

underscored alphabetic characters 279
unicode 372
unicode convert 288, 578, 594
Unicode Edition 62, 204, 288, 404-405, 489,
491, 500
union set function 132
Unique option 456
unique set function 133
unit arrays 4
unknown-entity 624
unknownentity 624
unnamed copy 635
unsqueezed type 194
untying component files 387
untying native files 499
update DataTable 216
update function time stamp 209
use separate thread for .NET 241
User Identification 280
using 597
UTF-16 595
UTF-32 595

Index 738

UTF-8 595

V

VALUE ERROR 594
variant operator 183, 308, 315, 390, 451, 456,
458, 463, 467, 477, 500, 517, 526
vector representation of operations 598
vectors

empty character 297
verify and fix input 600

W

waiting for threads to terminate 593
where function 134
whitespace 618
wide character 419
Widths option 308, 315
Wildcard option 451, 458, 463, 467, 477
window

create object 602
get property 605
names of children 606
set property 607

window expose names 609
Windows Presentation Foundation 241
without set function 134
workspace available 601
workspace identification 573, 608, 656
workspace library 643
write text file 484
writing file access matrices 384
WSPATH parameter 643

X

xml convert 610
markup 621
unknown-entity 624
unknownentity 624
whitespace 618

Z

zilde constant 134

